
Empirical Issues in Syntax and Semantics 8

O. Bonami & P. Cabredo Hofherr (eds.) 2011, pp. 167–194

http://www.cssp.cnrs.fr/eiss8

Reambiguating: on the non-monotonicity

of disambiguation

Fritz Hamm and Torgrim Solstad∗

1 Introduction

The relation between lexical ambiguity and disambiguation is mostly approached from

an intra-sentential perspective. Thus, when analyzing the ambiguity and disambigua-

tion of a lexical item, one tends to study its variance in interpretation when it is mod-

ified by or occurs as an argument of other lexical items. Broadening this perspective,

this paper shows that there are important insights into the nature of disambiguation

to be gained by studying more closely how ambiguous expressions behave in contexts

spanning more than one sentence. More specifically, we introduce new data involving

anaphora resolution with the following two characteristics: (i) a potentially ambigu-

ous antecedent which is disambiguated in its local context, and (ii) anaphora which

refer to one of the possible readings of the antecedent which was not selected in the

local antecedent context. We argue that these data call for a revision of how we con-

ceive of and formalize the process of disambiguation, introducing the notion of ream-

biguation, which characterizes the process of reintroducing alternative interpretations

which were originally excluded by disambiguation.

The paper is structured as follows. In Section 2, we discuss properties of ambiguity

and disambiguation. We also give an informal overview of our approach, including a

discussion of the notion of reambiguation. In Section 3, the formal basis of our analysis

is presented. In Section 4, we present the analysis and discuss some consequences of

our approach for formal discourse semantics in general. Section 5 concludes the paper.

2 Ambiguity, Disambiguation and Underspecification

Formally, ambiguities are often represented by means of underspecification. In com-

putational linguistics and formal semantics alike, underspecification is thought to be

a more efficient way of handling the interpretational variance of expressions in the

case of e.g. both scopal and lexical ambiguities. Thus, if no disambiguation can take

∗We would like to thank Hans Kamp, Uwe Reyle, Arndt Riester, Antje Roßdeutscher, Henriette

Slogsnat, the anonymous reviewers and the CSSP 2009 audience for valuable comments and discus-

sion. The research reported here was supported by the projects B4 and D1 of the Collaborative Research

Centre “Incremental Specification in Context” (SFB 732) at the University of Stuttgart.

168 Fritz Hamm and Torgrim Solstad

place, as is the case when the information present does not allow an informed deci-

sion as to which interpretation to choose, the underspecified representation allows

interpretational decisions to be deferred to a later point at which such information

may become available. We focus on another aspect of underspecification, however,

namely its role in the relation between ambiguous and disambiguated expressions. In

general, it is assumed that semantic information included in an underspecified repre-

sentation is discarded and not retrievable when interpretational decisions resulting in

disambiguation are made. Contrary to this, we argue that this view is inadequate for

the phenomena of anaphora resolution which we analyze in this paper: Still assuming

disambiguation to involve the discarding of information in underspecified represen-

tations, we allow the result of disambiguation to be reversed or altered in subsequent

discourse under certain conditions.

Underspecified representations of lexical (or scopal) ambiguities typically involve

some kind of disjunction (Reyle, 1993) or conjunction (Poesio, 1996). In the Under-

specified Discourse Representation Theory approach of Reyle, for instance, under-

specification is represented by means of the disjunctive operator
!
∨, cf. the simplified

representation of the two-way ambiguous deverbal nominalization delivery in (1):

(1)

〈

α

empty

α= e
!
∨ α= y

e: deliver(x,y)

AGENT(e)=x

THEME(e)=y

〉

More specifically, the representation in (1) shows the semantic representation for de-

livery at NP level, stating that the event of delivering involves an agent and a theme ar-

gument. Importantly, α in (1) represents the referential argument of the noun phrase

which is assumed to be bound at DP level. As indicated in the first line of the condi-

tion part of the representation, the referential argument α of delivery may either be an

event or an object, the latter corresponding to the theme of the verb deliver.

Assuming a disjunct or conjunct representation of such underspecified ambiguous

expressions, disambiguation is naturally viewed as a process of disjunct or conjunct

deletion. Thus, the disambiguating contexts for delivery in (2) are often thought to

lead to a deletion of the first or second disjunct in the top-most condition in (1).1

(2) a. the damaged delivery (α= e
!
∨α= y)

b. the quick delivery (α= e
!
∨ α= y)

In (2), damaged is assumed to combine only with the object reading of delivery, whereas

quick selects only the event reading. As mentioned briefly above, the status of the

deleted disjunct(s) or conjunct(s) will be of main interest in this paper. We also assume

that the disambiguation of underspecified expressions leads to disjunct or conjunct

deletion. However, we argue that the information contained in the deleted conjunct

should be retrievable under certain conditions.

Our data mainly involve German deverbal nominalizations. More specifically, we

present a study of nouns derived by means of the suffix -ung (comparable both to -tion

1Similar remarks may be made with regard to Poesio’s (1996) disambiguation inference mechanism.

Reambiguating: on the non-monotonicity of disambiguation 169

and -ing nominalizations in English, cf. Ehrich and Rapp, 2000; Rossdeutscher and

Kamp, 2010). While all productively derived -ung nouns have an event reading, quite a

few -ung derivations additionally have result state and/or object readings, cf. Absper-

rung (from absperren ‘cordon off’, ‘block’) in (3), which is three-way ambiguous:

(3) a. Die

the

Absperrung

barrier

wird

will be

morgen

tomorrow

abgebaut.

dismantled

‘The barrier will be dismantled tomorrow.’

b. Die

the

Absperrung

cordoning-off

des

the

Gebiets

area

wird

is

noch

still

aufrecht erhalten.

sustained

‘The cordoning-off of the area is still sustained.’

c. Die

the

Absperrung

cordoning-off

des

the

Gebiets

area

wurde

was

von

by

den

the

Demonstranten

protesters

behindert.

hampered

‘The cordoning-off of the area was hampered by the protesters.’

All noun phrases headed by Absperrung in (3) are disambiguated in context: the predi-

cate abbauen (‘dismantle’) (3-a) is assumed to select for object interpretations, aufrecht

erhalten (‘sustain’) (3-b) for states and behindern (‘hamper’) (3-c) for event interpreta-

tions (for details see Hamm and Kamp, 2009). A simplified, underspecified semantic

representation covering all three readings is provided in (4):

(4) 〈α

z

α= e
!
∨ α= s

!
∨ α= y

e CAUSE s

s: HAVE(y,z)

FUNCTION_AS_BARRIER(y)

AGENT(e)=x

〉

Briefly stated, Absperrung involves an event e causing a state s in which the (incremen-

tal) theme y blocks access to some region z. Again, the topmost condition of the rep-

resentation provides information on the possible referential arguments of the noun: it

may be an event (e), a state (s) or an object (y). For details on the logic and ontology of

disambiguation, the reader is referred to Hamm and Kamp (2009).

Taking the above considerations of Reyle (1993) or Poesio (1996) as a starting point,

there is nothing special about how the disambiguating contexts in (3) influence the

possible referential arguments of the DPs headed by Absperrung (‘cordoning-off’, ‘bar-

rier’). However, we present data (the naturalness of which has been confirmed by

numerous native speakers) which are highly problematic for a naive disambiguation-

as-disjunct-deletion approach as described above. These data involve two-sentence

sequences where a potentially ambiguous deverbal nominalization is disambiguated

in the first sentence. The second sentence contains a pronoun which is clearly co-

referential with the DP headed by the deverbal nominalization. However, due to sortal

restrictions in its local context, this pronoun can only pick up a reading which was not

selected for in the first disambiguating sentence, cf. the sequence in (5):

170 Fritz Hamm and Torgrim Solstad

(5) Die

the

Absperrung

cordoning-off

des

the

Rathauses

town hall

wurde

was

vorgestern

the day before yesterday

von

by

Demonstranten

protesters

behindert.

hampered.

Wegen

Due to

anhaltender

continuing

Unruhen

unrest

wird

is

sie

it

auch

also

heute

today

aufrecht erhalten.

sustained.
‘The cordoning-off of the town hall was hampered by protesters the day before

yesterday. Due to continuing unrest, it [the state of being cordoned off] is sus-

tained today as well.’

In (5), the anaphora sie (‘it’, literally: ‘she’) is co-referential with the noun phrase headed

by Absperrung in the first sentence. As stated in the discussion of example (3-c), the

predicate behindern (‘hamper’) restricts the ambiguity of Die Absperrung des Rathauses

and fixes an event reading of the noun phrase. However, recall that the matrix predi-

cate in the second sentence, aufrecht erhalten (‘sustain’), only allows the referential

argument of the anaphora sie (‘it’) to be a state. But if the fixation of the event read-

ing, i.e. the disambiguation of Absperrung, involves the irreversible deletion of its other

possible referential arguments, there should be no appropriate discourse referent for

sie (‘it’) to pick up, contrary to intuitions. Given the naturalness of the sequence in (5),

we contend that the disambiguation-as-deletion view must be revised. The mecha-

nism of reambiguation which we propose accounts adequately for data such as (5) by

allowing the restricted recovery of information which has been discarded as a result of

disambiguation.

Attempting to pre-empt some of the most obvious arguments against granting ex-

amples such as (5) any special status, let us discuss briefly (i) a “lazy” approach, and (ii)

the option of coercion, which have both been suggested to us in discussion. What we

refer to as a “lazy” approach attempts to avoid the problem by assuming that disam-

biguation does not involve any deletion whatsoever. We contend that this is no option,

as it would predict that every possible discourse referent of a noun is always available

in subsequent discourse. The following unacceptable example (indicated by the ‘#’

sign), which will be discussed later, shows that this is not the case. It crucially involves

a ‘physical object antecedent’ and an anaphora of event type:

(6) #Die

the

Absperrung

barrier

wurde

was

heute

today

verstärkt.

fortified.

Sie

It

war

had

am Vortag

the day before

massiv

massively

behindert

hampered

worden.

been.

Intended: ‘The barrier was fortified today. It [the cordoning-off] had been mas-

sively hampered the day before.’

Concerning the second option of coercion (or rather reinterpretation in the terms of

Egg, 2005), this is a more intricate issue, which we can only touch upon in this paper.2

Obviously, coercion would in principle always be applicable, as there are basically no

restrictions to the mechanism of coercion given a sufficient complexity of types, which

2The notion of coercion as introduced by Moens and Steedman (1988) was originally restricted to

aspectual phenomena. Later, it has been widened to include a number of other phenomena such as e.g.

sortal shifts (Dölling, 2003) in the nominal domain (cf. e.g. the work of Egg, 2005).

Reambiguating: on the non-monotonicity of disambiguation 171

is problematic in itself. As we will see below (see the discussion of examples (38-a)-

(38-b) in Section 4), establishing proper restrictions for the acceptability of anaphoric

relations such as the one in (5) is beyond the scope of simple type conflict resolution

generally considered in formalizations of coercion. A more general argument against

such an approach is that coercion, also in broader terms of sortal shifts, is taken to be

a locally restricted phenomenon involving predicate-argument or modifier-head rela-

tions for which a (sortal) type conflict may be observed. In the case of (5) it is not all

that clear what should initiate the process of coercion in the first place as there are

no local type conflicts involved. Both the semantics of the DP headed by the nomi-

nalization and also obviously that of the pronoun satisfy the sortal restrictions of the

arguments selecting for them locally. Of course, there is a type conflict involving the

anaphora and its antecedent in (5), but we contend that applying coercion is not an

appropriate way to deal with such phenomena. Rather, sequences such as (5) provide

counter-examples to generally accepted assumptions in formal-semantic theories of

anaphora resolution (cf. e.g. van Eijck and Kamp, 1997), which assume type identity

between anaphora and their antecedents. Crucially, the solution we propose for deal-

ing with the type conflict in (5) also has interesting, more general consequences for

(formal) discourse semantics.

Before turning to the formal details of our analysis, we would like to give its main

characteristics in informal terms. To account for the acceptability of examples such as

(5), we reconstruct the required result state which the anaphora sie (‘it’) makes refer-

ence to. We show that such a reconstruction is possible even under the assumption

that behindern (‘hamper’) erases the result state reading of the first sentence in (5).

This is achieved in a process of reambiguation, which involves a three-step procedure

of inference, reification (turning a predicate into a term) and unification. This recon-

structed result state then serves as a suitable antecedent for the anaphoric pronoun sie

(‘it’) of the second sentence in (5). More specifically, the procedure may be described

as follows: Although there is no semantically suitable antecedent – in terms of seman-

tic types – for the pronominal anaphora sie (‘it’) in (5), one can certainly assume that

the discourse referent of the anaphor is allowed to be identified with the referent of

the DP die Absperrung des Rathauses, also based on the morpho-syntactic constraints

on referential identification for the discourse referent introduced by the singular femi-

nine pronoun sie (‘it’): Gender features exclude the referential argument of the neuter

noun Rathaus (‘town hall’) and number features excludes the referential argument of

the plural Demonstranten (‘protesters’). These constraints trigger a mapping from the

event denotation of die Absperrung des Rathauses to the result state, involving a non-

monotonic inferential process. The following pieces of information are of relevance for

this process:

• The semantics of Absperrung, which derives from the verb absperren (‘cordon

off’), involves an object (y), which is incrementally constructed in order to block

access to a region (z), i.e. the agent (x) of the event (e) causes a state (s) of inac-

cessibility of the region (z).

• The referential argument of the relevant ‘anaphora theme argument’ of the pred-

icate aufrecht erhalten (‘sustain’) is of result state type, while the ‘antecedent

theme argument’ of behindern (‘hamper’) is of event type.

172 Fritz Hamm and Torgrim Solstad

• The properties of the pronoun sie (‘it’) – its referent needs to be identified with

one which is introduced by a DP – requires a mapping from the event referent

of the DP die Absperrung des Rathauses (‘the cordoning-off of the town hall’) to

the result state of being cordoned off. This state is accessible via the semantics

of the predicate absperren (‘cordon off’). The mapping from the event to the

state consists in an abstraction over the times for which the predicate holds (from

absperr(e, t) to the reified absperr[e, t̂]). This set of times can in principle be both

the one for which the process of cordoning-off holds as well as the one for which

the result state holds. In our analysis, we only exploit the latter possibility, since

we assume that the predicate aufrecht erhalten (‘sustain’) only applies to result

states.

• Consequently, a non-monotonic inferential process is initiated, in which the com-

ing about of the result state of being cordoned off is inferred from the occurrence

of the process of cordoning off.

As mentioned above, the proposed formalization allows us to account adequately

for cases where the application of coercion would offer no obvious solution. This is for

instance the case with the non-monotonic inference which is triggered by behindern

(‘hamper’) and blocked by verhindern (‘prevent’), respectively (cf. Hamm and Kamp,

2009). Making reference to this inferential variance enables us to explain the difference

concerning the possibility of anaphora resolution in (5) versus (7).

(7) #Die

the

Absperrung

cordoning-off

des

the

Rathauses

town hall

wurde

was

vorgestern

the day before yesterday

von

by

Demonstranten

protesters

verhindert.

prevented.

Wegen

Due to

anhaltender

continuing

Unruhen

unrest

wird

is

sie

it

auch

also

heute

today

aufrecht erhalten.

sustained.
‘The cordoning-off of the town hall was prevented by protesters the day before

yesterday. Due to continuing unrest, it [the state of being cordoned off] is sus-

tained today as well.’

In (7), anaphora resolution fails because the above-mentioned non-monotonic infer-

ence that the activity of cordoning-off leads to a result state of being cordoned off is

blocked by verhindern (‘prevent’). Note that from the perspective of coercion, it is hard

to differentiate the two cases, since they both involve antecedents with referential ar-

guments of event type.

Finally, the problematic case in (6) discussed in connection with the “lazy approach”

is accounted for under the assumption that physical objects are represented by pred-

icates without temporal parameters. In this case, anaphora resolution is blocked cor-

rectly, since the above depicted three-step procedure involving inference, reification

and unification is not applicable for predicates without temporal parameters.

Concerning the notion of reambiguation, it should be noted that reambiguation

may involve a complete recovery of all readings which were deleted in the preceding

context, and not just shifting to a different one, as in (5). Consider (8), where ignori-

eren (‘ignore’) allows sie (‘it’) to have a referential argument of all three possible types

Reambiguating: on the non-monotonicity of disambiguation 173

(object, event and result state), whereas the Absperrung-DP in the first sentence clearly

only has an event reading:

(8) Die

the

Absperrung

cordoning-off

des

the

Rathauses

town hall

wurde

was

von

by

Demonstranten

protesters

behindert.

hampered.

Später

Later

haben

have

sie

it

alle

everyone

ignoriert.

ignored.
‘The cordoning-off of the town hall was hampered by protesters. Later, everyone

ignored it.’

In the next section, we present the most important theoretical prerequisites for the for-

mal analysis alluded to in the informal description above. It will involve a coupling of

Discourse Representation Theory (DRT; Kamp and Reyle, 1993) with Constraint Logic

Programming (CLP; van Lambalgen and Hamm, 2005).

3 Event Calculus

Crucially, our approached is based on Constraint Logic Programming. However, be-

fore we start to develop integrity constraints and programs for the examples discussed

so far, we will give a short informal introduction to the event calculus. For a much

more comprehensive introduction the reader is referred to van Lambalgen and Hamm

(2005). The event calculus originated in Artificial Intelligence and was used for high

level control of mobile robots (see McCarthy and Hayes, 1969; Kowalski and Sergot,

1986; Shanahan, 1997). In van Lambalgen and Hamm (2005) the event calculus is for-

malized as a (constraint) logic program with the aim to represent planning. The moti-

vation for logic programming as an adequate tool for planning is as follows: Planning is

defined as setting a goal and devising a sequence of actions that will achieve that goal,

taking into account events in the world, and properties of the world and the agents.

Now consider a typical clause of a propositional logic program, say

p1, . . . , pn → q.

In this clause, one may think of q as a goal to be achieved if conditions p1, . . . , pn

are satisfied. This accounts for the basic intuition concerning planning as well as for

the recursive character of planning, since the conditions p1, . . . , pn could be given as

subgoals as well:

ri1 , . . . ,rim → pi .

Moreover, logic programing nicely captures the crucial non–monotonicity of plan-

ning. Given a goal G and circumstances C under which G can be achieved, it does not

follow in a strict sense that G can be achieved under C plus some additional circum-

stances D. In this sense a planning system requires a non-monotonic formalism and

logic programming is such a formalism.

The connection between planning and linguistic processing is established by as-

suming that a sentence S is considered as a goal (make S true) to be achieved by up-

dating the discourse model. This means that we can model the understanding of a

174 Fritz Hamm and Torgrim Solstad

sentence in discourse as such a goal. The goal is to make a sentence – as part of a dis-

course – true by accommodating those facts necessary for establishing the truth of the

sentence.3 Let us now consider a specific example.

3.1 Linguistic Motivation

(9) It was hot. Jean took off his sweater.

In (9), we naturally understand that the eventuality expressed by the second sentence

is included in the temporal profile of the eventuality expressed by the first sentence. In

order to establish this temporal overlap one could intuitively argue as follows:

(10) World knowledge contains no link to the effect that taking off one’s sweater

changes the temperature. Since it is hot at some time before now, the state hot

must either hold initially or must have been initiated at some time t . The latter

requires an event, which is however not given by the discourse. Therefore hot

may be assumed to hold initially. Similarly no terminating event is mentioned.

Thus, hot extends indefinitely, and it follows that the event described by the

second sentence must be positioned inside the temporal profile of hot.

The event calculus is meant to formalize this kind of argumentation. Note the fol-

lowing important feature of the above argument. Several steps use a non–monotonic

inference scheme. For instance, the conclusion that the state hot holds initially is de-

rived from the observation that the discourse does not mention an initiating event.

From this observation we conclude that there is no initiating event, leaving only the

possibility that hot holds initially. A second feature of this reasoning involves the prin-

ciple of inertia. This principle, which is axiomatized by the axioms of the event calcu-

lus, states that if a state – hot in our example – is not forced to change under the impact

of an event, it is assumed to remain unchanged.

Before we proceed to describe the event calculus a bit more formally, we will first

outline a kind of roadmap for the formalism as a whole, since this type of formal sys-

tem is rather unusual in linguistic semantics. We will also indicate which part of the

combined system is used for the derivation of anaphora resolution in the examples

discussed so far. The combined system consists of the event calculus as a logic pro-

gram which, however, is confined to provide only universal information. For the intro-

duction of existential information the calculus is therefore combined with a tool from

data base theory – integrity constraints, which also allow to give a precise formulation

of the above slogan saying that a sentence S is to be considered as a goal (make S true)

to be achieved by updating the discourse model. The last component of the formalism

is a theory of reification which allows to turn predicates into terms. This is crucial for

the second step of the three-step procedure (inference, reification and unification) of

computing the anaphoric link in example (5).

3Van Lambalgen and Hamm (2005) argue for a close connection between planning and tense. The

justification of this claim is however beyond the scope of this paper. The interested reader is therefore

referred to van Lambalgen and Hamm (2005).

Reambiguating: on the non-monotonicity of disambiguation 175

The combined system
︸ ︷︷ ︸

Event calculus
︸ ︷︷ ︸

Integrity constraints
︸ ︷︷ ︸

Reification
︸ ︷︷ ︸

Inference update of maps predicates

discourse models to terms

We will now start with the language of the event calculus.

3.2 The language of the event calculus

Formally, the event calculus is a many-sorted first order logic. The sorts include event

types, fluents (time-dependent properties, such as activities), real numbers, and indi-

viduals.4 We also allow terms for fluent-valued and event type-valued functions.

The event calculus was devised to model formally two notions of change, instan-

taneous change – such as two balls colliding – and continuous change – for instance

the acceleration of a body in a gravitational field. A first series of primitive predicates

is used for modelling instantaneous change.

(11) Initially(f)

(12) Happens(e, t)

(13) Initiates(e, f , t)

(14) Terminates(e, f , t)

The intended meaning of these predicates is more or less self-explanatory. The

predicate Initially(f) takes as its argument a fluent (a time-dependent property) and

says that f holds at the beginning of a scenario. Happens(e, t) holds if event type e

happens at time point or interval t . The event calculus allows to interpret t as a point

or as an interval. Initiates(e, f , t) says that event type e causes f to be true strictly after

t ; i.e. f does not hold at t . Finally, Terminates(e, f , t) expresses that f holds at t and

that e causes f not to hold after t .

The next two predicates are used to formalize continuous change.

(15) Trajectory(f1, t , f2,d)

(16) Releases(e, f , t)

The 4–place predicate Trajectory(f1, t , f2,d) measures the change of f2 under the

force f1 in the interval from t to t +d . Linguistically, it is very close to the notion of

incremental theme (see for instance Krifka, 1989; Dowty, 1991). One may think of f1 as

an activity which acts on f2. Dowty uses mowing a lawn in order to explicate the notion

incremental theme. In Dowty’s example f1 is the mowing activity and f2 the changing

state of the lawn under this activity. The fluent f2 should therefore be considered a

parameterized partial object; in Dowty’s example the state of the lawn after d time

4The term fluent was coined by Newton for functions with a temporal parameter.

176 Fritz Hamm and Torgrim Solstad

steps of the ongoing activity of mowing. The axioms of the event calculus then provide

the homomorphism between the ongoing activity and the resulting (partial) state – the

partially mowed lawn – as required by Dowty.

The Releases(e, f , t) predicate is necessary for reconciling the two notions of change

formalized by the event calculus. Without this predicate the axioms would immedi-

ately produce an inconsistency. Intuitively, the Releases predicate says that after event

e happened, f is no longer subject to the principle of inertia. This allows f to change

continuously. Consider a scenario of filling a bucket with water. Event type tap–on

releases the parametrized fluent height(x) that measures the continuously changing

level of the water in the bucket from the principle of inertia.

The Clipped–predicate of the calculus expresses that an event either terminating

fluent f or releasing this fluent from the principle of inertia occurred between times t1

and t2.

(17) Clipped(t1, f , t2)

The last predicate states that fluent f is true at time t .

(18) HoldsAt(f , t)

‘HoldsAt’ should be considered a truth predicate although the axioms of the event cal-

culus do not contain the characteristic truth axiom, i.e.

HoldsAt(φ, t) ↔φ(t)

where φ is a name for formula φ. More formal machinery is necessary to transform

HoldsAt into a truth predicate satisfying the characteristic truth axiom. We will resume

the discussion of this topic in section 3.5.

In the next section we will introduce the axioms of the event calculus in an informal

way and motivate their use by way of the above reasoning example (10).

3.3 Axiomatization

In this section we will show how the axioms of the event calculus constrain the mean-

ings of the basic predicates and how they formalize the principle of inertia. Moreover

we will illustrate how the concept of the completion of a program helps to implement

the intutive idea that events that are not required to happen by a narrative are assumed

not to occur. We will demonstrate that this strategy forces the reasoning to be non–

monotonic. Let us start with an informal example.

(19) If a fluent f holds initially or has been initiated by some event occurring at time

t and no event terminating f has occurred between t and some t ′ such that

t < t ′, then f holds at t ′, (here < indicates the temporal precedence relation).

It is clear that this axiom embodies a law of inertia since if no f -related event oc-

curs then f will be true indefinitely. In the reasoning of example (10), this axiom was

used when we concluded from the fact that no terminating event for hot is mentioned

that this state holds indefinitely with regard to the story told so far. But this was not

the only reasoning principle we applied. From the fact that no terminating event was

Reambiguating: on the non-monotonicity of disambiguation 177

mentioned in the short discourse we concluded that none occurred. The axioms of

the calculus per se do not allow such a conclusion. We want a strengthening of the

assumptions in which only those events occur which are explicitly mentioned in the

discourse. In this sense understanding discourses is closely linked to closed world rea-

soning.5 There are many techniques for formalizing this kind of reasoning; one is cir-

cumscription (for a good overview see Lifschitz, 1994). In this paper, however, we use

the notion of the completion of a logic program. The advantage of logic programming

is that these techniques allow us to compute discourse models via fix point construc-

tions.

Let us be slightly more formal. The informal principle (19) is given by the combi-

nation of the following two axioms:

1. Initially(f) → HoldsAt(f ,0)

2. Happens(e, t)∧ Initiates(e, f , t)∧ t < t ′ ∧¬Clipped(t , f , t ′) →HoldsAt(f , t ′)

The most important feature to notice here is that the head – the part to the right

of the implication sign – consists of a simple atom, and the body – the part to the left

of the implication sign – consists of a conjunction of (negated and non–negated) for-

mulas. This conjunction is composed of predicates of the event calculus and temporal

information such as t < t ′ which are interpreted in the structure of the reals, i.e. in

(R,0,1,+, ·,<). These are the constraints of the event calculus considered as a con-

straint logic program. They are used to compute the time profile of the predicates of

the event calculus. All variables in the clauses of logic programs are supposed to be

universally quantified.

The completion of a program is a strengthening of it which explicitly expresses that

the predicates occurring in the program have extensions that are as small as possi-

ble. Before we apply the method of completion to the examples on which we focus in

this paper, we indicate how it works at the hand of a very simple program taken from

Nienhuys-Cheng and de Wolf (1997).

(20) a. Prof(confucius) (Confucius is a professor.)

b. Prof(socrates) (Socrates is a professor.)

c. ¬ Prof(y) → Student(y) (Every person who is not a professor is a student.)

The program involves two predicates, professor and student. The programming for-

malism is set up in such a way that it is only possible to make positive statements about

the extensions of predicates. Thus (20) states about the predicate professor that con-

fucius belongs to its extension (20-a) and also that socrates belongs to its extension

(20-b); and these are all the definite claims the program makes about the extension of

this predicate. The completion of the program ought to make this intuition concrete

by stating explicitly that the extension of professor consists just of these two individu-

als. We accomplish this by forming the disjunction of the formulas x = confucius and

x = socrates, where x is a new variable, which intuitively plays the role of an arbitrary

5A typical example of this kind of closed world reasoning is provided by (train) schedules. If the sched-

ule mentiones the departure of a train from Stuttgart to Tübingen at 10.15 and the next at 11.01 one

assumes that there will be no train leaving Stuttgart between 10.15 and 11.01.

178 Fritz Hamm and Torgrim Solstad

member of the extension of professor, and making this disjunction into the antecedent

of the following implication:

(21) x = confucius ∨x = socrates → Prof(x)

In the next step we universally quantify over the variable x and strengthen the impli-

cation to a bi–implication. The result is:

∀x(x = confucius∨x = socrates ↔ Prof(x))

This formula now says that the set of professors just consists of Confucius and Socrates.

Under the assumption that Confucius and Socrates are the only individuals in the

model we get that the set of students is empty. But assume now that the language

in which the program is formulated contains an additional individual constant plato

which is interpreted as an element of the universe of discourse. Assume further that

socrates 6= confucius 6= plato.6 Then (21) implies that plato is not a professor. Now

consider the third clause of program (20). A similar procedure applied to this clause

yields:

(22) ∀x(Student(x) ↔¬Prof(x))7

Formula (22) implies that Plato is a student. The conjunction of (21) and (22) is the

completion of program (20). This completion implies that Confucius and Socrates are

the only professors and that Plato is a student. The program itself does not support

such strong conclusions. A similar observation applies to certain extensions of (20)

that bring additional entities into play. Suppose for instance that we add to (20) the

fact beard(plato), which states that Plato has a beard. A minimal model for the com-

pletion of the extended program will have as a universe { confucius,socrates,plato }. In

this model Plato is not a professor, but the only student and the only individual with a

beard.

Let us now give a simple example with events. Consider a description of a situation

where the light is switched on at 1 in the night and switched off at 7 in the morning

given by the following program:

(23) a. Happens(switch-on,1)

b. Happens(switch-off ,7)

The uncompleted program does not yet imply that the light wasn’t switched off at 2

in the night and switched on at 3 in the night and so on. However, these events should

not occur in the minimal model of program (23). The completion of the program is

given by

∀e(Happens(e, t) ↔ (e = switch-on∧ t = 1)∨ (e = switch-off ∧ t = 7))

6This is an instance of the ‘uniqueness of names’ assumption.
7This is technically not quite correct. The formula produced by the official algorithm for computing

the completion of a program is:

∀x(Student(x) ↔∃y(x = y ∧¬Prof (y)))

But for the simple example discussed above this difference does not matter. The official formula and

(22) are equivalent.

Reambiguating: on the non-monotonicity of disambiguation 179

This formula means the same as:

∀e(Happens(e, t) ↔ (Happens(switch-on,1)∨ (Happens(switch-off ,7))

Any intervening events are thereby excluded.

This illustrates how the concept of the completion of a program helps to implement

the intuitive idea that events that are not required to happen by a narrative are as-

sumed not to occur. Note that this strategy forces the reasoning to be non–monotonic.

Program (23) could easily be enrichted with the clauses Happens(switch-off, 2) and

Happens(switch-on, 3). From the modified program the conclusion that there are no

events happening between Happens(switch-on, 1) and Happens(switch-off, 7) is now

no longer derivable.

To sum up: Understanding a sentence in a discourse is like computing a minimal

model of the discourse in which the sentence is true. This computation is based on

the completion of a constraint logic program for the discourse under discussion. In

the next section we will see, however, that this aim cannot be achieved by the technical

means introduced so far.

3.4 Integrity Constraints

As pointed out above, the variables in the clauses of logic programs are universally

quantified. Therefore logic programs are restricted to provide universal information

only. This is clearly not sufficient for our purpose. For example, tense requires exis-

tential information (see the example below) and DRSs in general introduce existential

information. We will use here a device from database theory – integrity constraints –

to obtain the required additional information. In database theory integrity constraints

are means to ensure that a database stays consistent under updates. In this paper we

will use integrity constraints in a slightly different way; we employ them as means to

update a discourse model. Let us explain this idea with a simple example, involving an

English sentence in the perfect.

(24) I have caught the flu.

This sentence says that I have the flu now and world knowledge tells us that there was

an infection event in the past. Let flu be the fluent corresponding to having the flu and

let e be the infection event. Our knowledge is thus formalized by the following program

clause.

Initiates(e,flu, t)

As already said, we view a sentence S as a goal (make S true) to be achieved by

updating the discourse model. In general it is not possible, however, to simply add this

information to the discourse model without further ado. There are two reasons for this.

First, we would like the updated discourse model to include explicitly all the events

that must have occurred in order for the total information represented by it to be true.

And, second, when the spelling out of what that comes to reveals a conflict, it should

mean that the new sentence cannot make a coherent contribution to the discourse as

the initial model represents it. It is therefore important that we do not just add the

180 Fritz Hamm and Torgrim Solstad

condition that I have the flu now, but also the event that must have led to this state of

affairs. The formalisation of the event calculus given earlier offers a systematic way of

doing this. In the present instance what needs to be inferred from HoldsAt(flu,now)

is that there was an earlier event e initiating flu, something that is expressed in the

present formalism by the clauses Initiates(e,flu, , t), Happens(e, t) and t < now.

We will now show how this reasoning applies to example (24). For this purpose,

assume that a discourse model is given as a collection of facts concerning events and

fluents and assume that sentence (24) is formalized as HoldsAt(flu,now). We do not

take this formula as a program clause but as an instruction to construct a minimal

adaptation of the discourse model in which HoldsAt(flu,now) is true. In order to detect

the events that must have occurred for HoldsAt(flu,now) to be true, we apply abduc-

tive reasoning using the basic program constituted by the axioms of our formulation of

the event calculus, as well as, possibly, additional axioms that capture aspects of world

knowledge. To this end, we use HoldsAt(flu,now) as the trigger that sets this reasoning

process in motion. Informally, the reasoning is as follows. We know that fluent flu is

initiated by some event e . Furthermore, no terminating event has been mentioned.

Therefore we conclude by closed world reasoning that no such event occurred. Con-

sider again axiom (19) repeated here as (25).

(25) If a fluent f holds initially or has been initiated by some event occurring at

time t and no event terminating f has occurred between t and some t ′ such

that t < t ′, then f holds at t ′

According to this axiom there is only one fact missing in order to establish the truth of

HoldsAt(flu,now). We have to add Happens(e, t), t < now and its logical consequences

to the discourse model. This is sufficient to guarantee the truth of HoldsAt(flu,now).

Let us now be a little bit more formal and see how this update is steered by the proof

system of logic programming, which is called resolution. Resolution can be regarded

as a species of abductive reasoning in which a premise is matched with the heads of

all clauses with which it can be matched and the abductive inference is then drawn

that the matching instantiation of at least one of the bodies of those clauses must hold.

Note the obvious connection between this type of inference and the concept of pro-

gram completion. We start with the query ?HoldsAt(flu,now). Applying the axiom in

(26), this query reduces to the new query

?Initiates(e,flu, t)

¬Clipped(t ,flu, t ′)

Happens(e, t), t < now

(26) Happens(e, t)∧ Initiates(e, f , t)∧ t < t ′ ∧¬Clipped(t , f , t ′) → HoldsAt(f , t ′)

The first clause can be resolved, since Initiates(e,flu, t) is given. For the second

query we have to use a form of resolution for negated queries. This means that we set

up a new derivation with the positive query

? Clipped(t ,flu, t ′).

Reambiguating: on the non-monotonicity of disambiguation 181

Since we have no matching clauses this query fails and therefore the negated query

succeeds (This is the proof–theoretic version of negation as failure.). We are left with

the last query

?Happens(e, t), t < now.

Since we do not have a matching clause for this query ?HoldsAt(flu,now), interpreted

as a query, would fail (finitely). However, HoldsAt(flu,now) interpreted as an integrity

constraint leads to an update of the discourse model with the missing clause. In this

updated model HoldsAt(flu, now) is clearly satisfied. This integrity constraint is written

as

?HoldsAt(flu,now)

A more general description of this procedure is as follows: Given a program P con-

taining the clauses below and an integrity constraint q we want to conclude that q can

only be the case because one of the φi ’s is the case.

φ1 → q

φ2 → q

...

φn → q

This is a strengthened form of closed world reasoning.

A second type of integrity constraint occurs when the top query must fail. This is

important for sentences about the past.

(27) Max arrived.

This sentence tells us that Max’s arrival was situated entirely in the past, and thus is not

going on any more at the present. The positive query

?Happens(e, t), t < now

expresses just the first part. The second part can only be expressed by the negative

constraint, which is represented as

?Happens(e,now), fails

Since the resolution process also accepts queries beginning with a negation we can

reduce this negative query to the positive query

¬Happens(e,now)

Since both positive and negative constraints are admitted and the latter are identified

by the term fails, it is natural to introduce a similar term to flag the positive queries.

We use succeeds. So the constraints contributed by (27) can be given as

?Happens(e, t), t < now, ¬Happens(e,now), succeeds

We will say that an integrity constraint IC is satisfiable if it can be made to succeed in

case it is positive, and can be made to fail in case it is negative.

182 Fritz Hamm and Torgrim Solstad

3.5 Reification

In this section we will extend Constraint Logic Programming (CLP) with a reification

component. This component makes it possible to associate a ‘res’ with each condition.

In particular, it will enable us to associate with each formula of the form HoldsAt(f , t)

an entity that can be regarded as the state of the fluent f obtaining.8 The reification

procedure is based on a method due to S. Feferman.

We will explain briefly how this works. For this purpose we will enrich the event cal-

culus with a specialization of the theory of truth and abstraction in Feferman (1984).9

Consider the predicate burn(x, y, t) where t is a parameter for time. Feferman’s sys-

tem allows to form terms from this predicate in two different ways. The first possiblity

is to existentially bind t and construct the term ∃t .burn[x, y, t]. The square brackets

are used here as a notational device to indicate that ∃t .burn[x, y, t] is a term and not a

predicate any more. The second possibility is to abstract over the temporal parameter

and form the term burn[x, y, t̂]. Informally burn[x, y, t̂] should be understood as the set

of times at which burn(x, y, t) is true. But note that burn[x, y, t̂] is a term and therefore

denotes an object. Feferman’s system thus provides two different kinds of structured

abstract objects. Intuitively we want to think of ∃t .burn[x, y, t] as the event type corre-

sponding to x’s burning of y and of burn[x, y, t̂] as the fluent or state corresponding to

x’s burning y.10 However, nothing in the formal set up so far tells us that ∃t .burn[x, y, t]

is an event type and burn[x, y, t̂] is a fluent. In order to make sure that burn[x, y, t̂] be-

haves as a fluent HoldsAt has to be turned into a real truth predicate. The following

theorem from Feferman (1984) provides the necessary technical result.

Theorem 1 Any system that is consistent – in the sense that it has a model – can be ex-

tended to a system with truth axioms.11 The extension is conservative over the original

system.

For the special theory under discussion here we need just one truth axiom, which

reads as follows:

HoldsAt(φ[t̂], s)↔φ(s)

The specialization for burn[x, y, t̂] therefore is:

HoldsAt(burn[x, y, t̂], s)↔ burn(x, y, s)

This shows that burn[x, y, t̂] behaves like a fluent. Moreover, ∃t .burn[x, y, t] can-

not be substituted as an argument of the HoldsAt–predicate, but it can be substituted

as an argument of the Happens–predicate. Hence, with regard to the axioms of the

event calculus, abstract terms like ∃t .burn[x, y, t] function as event types and terms

like burn[x, y, t̂] as fluents.

To see what this process of reification adds to the representations developed so far,

consider again sentence (24), here repeated as (28).

8Reification can be put to many other uses as well, but this is the one for which we need it here.
9For the most recent version of this theory see Feferman (2008).

10For an analysis of these different types of English gerunds see van Lambalgen and Hamm (2005),

chapter 12.
11A model for the event calculus was constructed in van Lambalgen and Hamm (2005).

Reambiguating: on the non-monotonicity of disambiguation 183

(28) I have caught the flu.

The structure of this sentence was represented by the simple fluent flu in the deriva-

tion of Section 3.4. For the purposes of this section this representation was sufficient.

However, we would like to have access to the internal structure of sentence (28) as

well. For simplicity, we will assume that the personal pronoun I is represented by the

individual constant i. Under this assumption, sentence (28) can be formalized as the

structured fluent flu[i , t̂]. This representation allows us to have access to the subject of

the sentence. We will see in a moment that the possibility to structure fluent and event

type objects is an indispensible prerequisite for the transformation of DRSs to integrity

constraints.

3.6 Event Calculus and DRT

In this section we will outline the connection between Discourse Representation The-

ory and the Event Calculus with the simplest example from Hamm et al. (2006). Con-

sider again sentence (29).

(29) Max arrived.

The DRS for this sentence is given in (30):

(30)

m t e

t ≺ n

e ⊆ t

e: arrive(m)

Since DRSs introduce existential presuppositions which have to be accommodated,

integrity constraints are the appropriate means to represent their inferential potential.

First we assume that the constant m and the predicate arrive(x, t) are given. This predi-

cate will be used in its reified form. We use the first possibility for reification and derive

the event type ∃s.arrive[x, s].

It has often been observed that the simple past uttered out of the blue is infelicitous.

This tense requires that the context provides additional information something like a

‘reference time’. We will represent the context here with a new fluent constant f and the

clause HoldsAt(f, t). This constant can then be unified with further contextually given

information.

The discourse referent e corresponds to ∃s.arrive[x, s] and the condition e: arrive(m)

to the clause Happens(∃s.arrive[m,s], t); n is set to now and t correspond to the context

fluent f. In this way, the DRS for sentence (29) is turned into integrity constraint (31).

(31) ?HoldsAt((f, t), t),Happens(∃s.arrive[m,s], t), t < now,

¬Happens(∃s.arrive[m,s],now), succeeds

Since in the rest of this paper we will not be concerned with tense, we will simplify

integrity constraints as much as possible. First we will drop the clause for the con-

text fluent and the negative integrity constraint. Moreover, we will ignore the internal

structure of fluent and events whenever this does not lead to confusion. For instance,

184 Fritz Hamm and Torgrim Solstad

we will simply write e for ∃s.arrive[m, s]. Given these assumptions, integrity constraint

(31) now reads:

(32) ?Happens(e, t), t < now, succeeds

This is certainly not completely adequate, but the topics to be discussed in the rest

of this paper will not be affected by this simplification.

3.7 Scenarios and Hierarchical Planning

In this section we will start our discussion of more complex examples. The first one is

the verb absperren (‘cordon off’) and the derived ung-nominal Absperrung (‘cordoning-

off’, ‘barrier’) respectively the NP die Absperrung des Rathauses (‘the cordoning-off of

the town hall’). Let us start with the accomplishment verb absperren (‘cordon off’). Ac-

cording to van Lambalgen and Hamm (2005), every Aktionsart determines a specific

‘scenario’. A scenario should be considered as a local program in contrast to the global

program given by the axioms of the event calculus. These local programs provide the

additonal information for the Aktionsarten in question, in this case the information

specific to accomplishments. In order to formulate this local program we need the

following terms in the language of the event calculus.

• construct is an activity fluent.

• barrier(x) is a parameterized fluent indicating the construction state x of the bar-

rier.

• m a real constant indicating the construction stage at which the barrier is con-

sidered finished. Thus barrier(m) may be considered the completed object.

• 0 is a real constant indicating the state at which the construction of the barrier

starts.

• start is an event initiating constructing.

• finish is the event terminating the constructing activity when the barrier is fin-

ished.

• a fluent accessible(r) represententing the state in which the town hall is accessi-

ble, where r is a constant denoting the town hall.

• g is a function relating the constructing activity to the construction stage of the

barrier. To keep things simple we assume that g is monotone increasing.

These terms allow us to write the following set of clauses as one possible scenario

for the accomplishment verb absperren (‘cordon off’).

(33) a. Initially(barrier(0))

b. Initially(accessible(r))

c. HoldsAt(barrier(m), t)∧HoldsAt(construct, t) →

Happens(finish, t)

Reambiguating: on the non-monotonicity of disambiguation 185

d. Initiates(start,construct, t)

e. Initiates(finish,barrier(m), t)

f. Terminates(finish,accessible(r), t)

g. Terminates(finish,construct, t)

h. HoldsAt(barrier(x), t) →

Trajectory(construct, t ,barrier(x + g (d)),d)

i. Releases(start,barrier(0), t)

The scenarios for the Aktionsarten are not determined uniquely, but every scenario

is required to include information specific to the Aktionsart of the verb under consid-

eration. For the example above, this means that every scenario has to include clauses

about the starting and finishing events, about the activity constructing, the state ac-

cessible(r), and clauses relating this activity to the state of the partial object barrier(x).

Together with the axioms of the event calculus these clauses determine inferences trig-

gered by the Aktionsart of absperren (‘cordon off’) and the lexical content of this verb.

We are primarily interested in the NP Absperrung des Rathauses (‘cordoning-off of

the town hall’). We will first concentrate on the event reading; the result state reading

will be discussed later.

The first step consists in establishing an event type corresponding to the event

reading of Absperrung des Rathauses. Using Feferman coding we can transform the

predicate absperren(x,r, t) into the abstract event type a = ∃t .absperr[x,r, t], in which

r is an individual constant representing the town hall. This is a possible denotation for

Absperrung des Rathauses (‘cordoning-off of the town hall’), but so far this event type

is not related to the verb from which Absperrung is derived.

In order to link the nominal to the semantics of the base verb given by its scenario,

we introduce an event definition by hierarchical planning. The intuitive idea is that

hierarchical planning allows to abstract from certain details of the verb’s eventuality

while maintaining the most important features of the verb’s time profile. Formally hi-

erarchical planning is given by program clauses defining an event occurring in the head

atom of a clause. We will use the following definition.

Definition 1 Suppose a scenario for the fluent f is given. In the context of this scenario,

the event e is defined by hierarchical planning using f if the following holds:

Happens(start f , s) ∧ s < w ∧ HoldsAt(f , w) → Happens(e, w)

In the special case considered here Definition 1 gives:

Happens(startconstruct , s)∧s < w∧HoldsAt(construct, w) → Happens(∃t .absperr[x,r, t], w)

We will simply write a for the event type ∃t .absperr[x,r, t] defined in this way. We

thus have a denotation for the event reading of the NP die Absperrung des Rathauses

(‘the cordoning-off of the town hall’). Next, we have to consider the verbal contexts of

this NP. The first verb is behindern (‘hamper’) in (34).

(34) Die Absperrung des Rathauses wurde behindert.

‘The cordoning-off of the town hall was hampered.’

186 Fritz Hamm and Torgrim Solstad

Let us assume that an event type valued function behindern (‘hamper’) is given.

Then we arrive at the following integrity constraint:12

(35) ?−Happens(a, t),Happens(behindern(a), t), t < now, succeeds

This is certainly too simple. An event type like behindern (‘hamper’) requires its own

scenario. We think that for behindern (‘hamper’) to be applied successfully, the activ-

ity of cordoning-off must have been initiated and behindern (‘hamper’) supplies the

additional information that this activity does not proceed in a smooth way. However,

we think that although the activity of cordoning-off is hampered in more or less seri-

ous ways, nevertheless the goal – the sealing off of the town hall – will eventually be

achieved (non-monotonically).

This changes when one considers our next verb, verhindern (‘prevent’). In (36) the

result state – the town hall being cordoned off – is clearly not achieved.

(36) Die Absperrung des Rathauses wurde verhindert.

‘The cordoning-off of-the town hall was prevented.’

This is adequately represented by integrity constraint (37). Since according to (37) fin-

ish is not allowed to happen, we cannot derive HoldsAt(barrier(m), s) and

¬HoldsAt(accessible(r), s) for some time s.

(37) ?−Happens(a, t),Happens(finish, t), t < now, fails

4 Anaphora resolution

In this Section, we first show how the above theoretical considerations apply to the

crucial example (5) in Section 2 (to be repeated below). Next, we go on to point at

some consequences of our approach for formal discourse semantics in general.

4.1 Reconstructing anaphoric relations

In this section, we will show why anaphora resolution is possible in (38-a) and explain

why is it blocked in (38-b) in a slightly more formal way.

(38) a. Die Absperrung des Rathauses wurde vorgestern von Demonstranten behin-

dert. Wegen anhaltender Unruhen wird sie auch heute aufrecht erhalten.

‘The cordoning-off of the town hall was hampered by protesters the day

before yesterday. Due to continuing unrest, it is maintained today as well.’

b. #Die Absperrung des Rathauses wurde vorgestern von Demonstranten ver-

hindert. Wegen anhaltender Unruhen wird sie auch heute aufrecht erhal-

ten.

‘The cordoning-off of the town hall was prevented by protesters the day

before yesterday. Due to continuing unrest, it is maintained today as well.’

12This is a simplification: The scenario for behindern (‘hamper’) plus hierarchical planning triggered

by past tense introduces an event type e which has to be unified with a.

Reambiguating: on the non-monotonicity of disambiguation 187

Clearly, in (38-a) the pronoun sie (‘it’) in the second sentence refers to the target state

of being cordoned-off which may be inferred from the first sentence. The impossibility

of such an interpretation – this is what “#” is meant to signal – suggests that due to the

meaning of the verb verhindern (‘prevent’), such a target state is not available in (38-b).

We will simplify the formalisation as far as possible, concentrating only on what

is essential for anaphora resolution. The first sentence of (38-a) is represented by in-

tegrity constraint (35), i.e. by

?−Happens(a, t),Happens(behindern(a), t), t < now, succeeds

The important part of the second sentence is the one containing the verb aufrecht

erhalten (‘sustain’) and the pronoun sie (‘it’). Choosing a fluent variable s – s being

mnemonic for state – and a fluent-valued function aufrecht-erhalten we formalise this

part as:

?−HoldsAt(aufrecht-erhalten(s), s), s < now, succeeds

The whole little discourse in (38) is thus represented by the integrity constraint in

(39).

(39) ?−Happens(a, t),Happens(behindern(a), t),HoldsAt(aufrecht-erhalten(s), t),

t < now, succeeds

Since aufrecht-erhalten requires a state – a special type of fluent – as an argument, s

cannot be unified with event type a. This is the formal version of the already explained

type mismatch. Therefore it seems that anaphora resolution is blocked in this case.

We will now show that it is nevertheless possible to reconstruct an anaphoric re-

lation by using information contained in the scenario for the verb absperren (‘cor-

don off’). Since aufrecht-erhalten selects the (result) state reading of the NP die Ab-

sperrung der Botschaft (‘the cordoning-off of the town hall’) we first have to intro-

duce a denotation for this NP that represents this reading. Note that we assume that

behindern (‘hamper’) allows – perhaps later than planned – finish to happen (non-

monotonically). From this we can derive via resolution ¬HoldsAt(accessible(r), w) for

some time w . Using Ferferman coding we can reify this formula and obtain the flu-

ent object ¬HoldsAt[accessible(r), ŵ]. We take this object as the denotation of the (re-

sult) state reading of the NP die Absperrung des Rathauses.13 Now we can compute the

anaphoric relation between the pronoun sie (‘it’) and its antecedent die Absperrung des

Rathauses (‘the cordoning-off of the town hall’) by unifying s – representing sie (‘it’) –

with ¬HoldsAt[accessible(r), ŵ]. Writing inaccessible for ¬HoldsAt[accessible(r), ŵ] we

arrive at the following representation for discourse (38-a):

13This is justified in Hamm and Kamp (2009).

188 Fritz Hamm and Torgrim Solstad

(40) ?−Happens(a, t),Happens(behindern(a), t),

HoldsAt(aufrecht-erhalten(inaccessible), t), t < now, succeeds14

Summing up, we reconstructed the anaphoric relationship between the pronoun

sie and and the antecedent NP die Absperrung des Rathauses in three steps. First, we

derived the formula ¬HoldsAt(accessible(r), w) by resolution using information from

the scenarios of the verbs absperren and behindern. Second, we transformed this for-

mula into the term ¬HoldsAt[accessible(r), ŵ] = inaccessible and third, we unified s

with this term. In the minimal model this is the only possibility because there are no

other result states, but in richer models there may very well be more than just one re-

sult state. In this case, s could be freely unified with these other states, but this would

result in a deictic reading for the second sentence of example (38-a).

Consider now the mini-discourse in (38-b), where the only difference from (38-a) is

that behindern (‘hamper’) in (38-a) has been replaced by verhindern (‘prevent’). Com-

bining integrity constraint (37) with the representation of the second sentence of ex-

ample (38-b), we get integrity constraint (41) for (38-b).

(41) ?−Happens(a, t),Happens(finish, t), t < now, fails,

HoldsAt(aufrecht-erhalten(s), t), t < now, succeeds

Since this integrity constraint forbids finish to happen for any time t we are no longer

in a position to derive ¬HoldsAt(accessible(r), t). But then we cannot unify s with the

reified version of ¬HoldsAt(accessible(r), t) and thus the resolution of the pronoun sie

(‘it’) with the NP die Absperrung des Rathauses is correctly blocked. As mentioned in

Section 2, is it hard to see how applying coercion could account for the difference be-

tween (38-a) and (38-b), given that behindern (‘hamper’) and verhindern (‘prevent’)

both select for arguments of the same (event) type.

Note that the possibility to reconstruct the anaphoric relation in (38-a) depends on

the fact that ¬HoldsAt(accessible(r), t) contains a temporal parameter. This is crucial

for our next example involving the object reading of die Absperrung des Rathauses –

repeated here as (42).

(42) #Die Absperrung wurde heute verstärkt. Sie war am Vortag massiv behindert

worden.

‘The barrier was fortified today. It [the cordoning-off] had been massively ham-

pered the day before.’

In example (42), the pronoun sie (‘it’) cannot refer back to Absperrung (‘barrier’). As

mentioned in Section 2, this is somewhat surprising for a “lazy” approach, in which

disambiguation does not involve conjunct or disjunct deletion of underspecified rep-

resentations. We will only briefly indicate how we can account for the inacceptability

14A more realistic constraint would be:

?−Happens(a, t),Happens(behindern(a), t),

HoldsAt(aufrecht-erhalten(inaccessible), t ′), t < t ′ < now, succeeds

which requires that the state inaccessible temporally succeeds the disturb event. The derivation of the

temporal ordering of eventualities is however beyond the scope of this paper. The interested reader is

adviced to consult van Lambalgen and Hamm (2005), in particular chapter 9.

Reambiguating: on the non-monotonicity of disambiguation 189

of the sequence in (42).

To fortify a barrier presupposes that a barrier already existed. Let us represent this

state of the material object which is established by the cordoning-off activity by means

of the fluent barrier(m) which is contained in the scenario of the verb absperren (‘cor-

don off’). This fluent holds after the finish event happened. It corresponds to a com-

pleted barrier. The denotation for the object reading of the noun Absperrung (‘barrier’)

can now be given by (43).

(43) Absperrung(barrier(m))

Note that this formula does not contain a temporal parameter. Therefore, the three

step procedure for reconstructing anaphoric relations introduced above cannot be ap-

plied in such cases. This explains why the result state pronoun sie (‘it’) in example (42)

cannot refer back to the DP die Absperrung (‘the barrier’).

4.2 Formal Discourse Semantics

In all classical theories of formal discourse semantics it was assumed that certain log-

ical operators like negation, disjunction and universal quantification – in contrast to

existential quantification and conjunction – block anaphora resolution.15 These op-

erators were considered as static. For instance, in early DRT the accessibility relation

– a geometrical relation on the DRS level – caused discourse referents contained in a

negated DRS to be inaccessible. In Dynamic Predicate Logic, the semantics of nega-

tion as a test did not allow scope extension of the existential quantifier as it did in non–

negated sentences. This accounted for the grammaticality distribution in (44).

(44) a. A man walked in the park. He whistled.

b. #No man walked in the park. He whistled.

However, there are cases for which this prediction is too strong:

(45) It is not the case that John does not own a car. It is red and it is parked in front

of the house.

For this reason, Groenendijk and Stokhof (1990) introduce a dynamic negation which

restores the binding potential of the double negated sentence (44). This kind of nega-

tion was improved among others by Dekker (1993).

The following examples due to Rainer Bäuerle (1988), however, show that the pres-

ence or absence of negation is not the only factor determining anaphora resolution.

Rather, the interaction of negation with certain types of verbs is crucial. Consider first

the examples in (46), which are coherent with the predictions of the early formal dis-

course theories.

(46) a. Hans

Hans

schrieb

wrote

einen

a

Brief.

letter.

Das

It

dauerte

lasted

zwei

two

Stunden.

hours.

‘Hans wrote a letter. This took him two hours.’

15In this section we will only consider negation.

190 Fritz Hamm and Torgrim Solstad

b. #Hans

Hans

schrieb

wrote

keinen

no

Brief.

letter.

Das

It

dauerte

lasted

zwei

two

Stunden

hours.

‘Hans did not write a letter. This took him two hours.’

A variation of the second sentence, however, shows that this is in general not correct.

(47) a. Hans

Hans

schrieb

wrote

einen

a

Brief.

letter.

Das

It

überraschte

surprised

uns

us

alle.

all.

‘Hans wrote a letter. We were all surprised by that.’

b. Hans

Hans

schrieb

wrote

keinen

no

Brief.

letter.

Das

It

überraschte

surprised

uns

us

alle.

all.

‘Hans did not write a letter. We were all surprised by that.’

We will now show that the proposed formalism allows us to account for this gram-

maticality distribution as well. Again, we will only give those formal details which are

essential for anaphora resolution. Let us first consider the examples in (46). Let e be

the event type representing Hans writing a letter. The first sentence of (46-a) is then

formalised as

?−Happens(e, t), t < now,succeeds

and the second as (with e ′ as a variable representing the pronoun das (‘it’)).

?Happens(dauern(e ′), t), t < now, t = 2 hours, succeeds

Together they represent the discourse in (46-a).

(48) ?−Happens(e, t), t < now,Happens(dauern(e ′), t),

t = 2 hours, succeeds16

In the minimal model computed by integrity constraint (48), e ′ and e will be uni-

fied. Thus, das (‘it’) refers to the event of Hans writing a letter. In non–minimal models,

e ′ may be unified with other event types. This will give the deictic reading again.

The integrity constraint for the first sentence of example (46-b) is given as in (49):

(49) ?Happens(e, t), t < now,fails

The integrity constraint for the second sentence is the same as the one for (46-a). In-

tegrity constraint (49) computes a model in which there is no event type with the re-

quired property, i.e. of Hans writing a letter. Therefore, das (‘it’) cannot be unified with

such an event type. This explains the grammaticality distribution in (46).

We will now consider the examples in (47-a). First we have to determine the sort of

arguments überraschen (‘surprise’) requires. We will assume here that this verb takes

only facts as arguments. In case that überraschen (‘surprise’) turns out to be ambiguous

between an event and a fact reading, a slightly more involved argument will explain the

facts in (47-a) too.

The first parts of the sentences in (47-a) are of course formalised as above. The

second part gives rise to the following integrity constraint:

16The same proviso as in footenote 14 concerning the derivation of the temporal ordering of eventu-

alities applies here as well.

Reambiguating: on the non-monotonicity of disambiguation 191

(50) ?−HoldsAt(surprise(f), t), t < now,succeeds

Here, we are facing a type mismatch again. The variable f cannot be unified with event

e provided by the first sentence since e and f belong to different sorts.

However, we can reify the predicate Happens(e, t) occurring in the integrity con-

straint for the first sentence and thereby get: Happens[e, t̂]. Intuitively one can con-

sider this term as denoting the fact that event e occurred. Unifying f with this term

results in:

(51) ?−HoldsAt(surprise(Happens[e, t̂]), t), t < now,succeeds

This means that the fact that Hans wrote a letter surprised us. Let us now consider

example (47-b). The integrity constraint for the first sentence is:

?−Happens(e, t), t < now,fails

An integrity constraint fails if and only if its negation succeeds. Therefore, we get

the following equivalent constraint

?−¬Happens(e, t) t < now,succeeds

Applying reification to the Happens-part of this constraint we can derive the term

¬Happens[e, t̂]. Since this is a term of the same sort as f , it is possible to unify f with

¬Happens[e, t̂]. The result is:

?HoldsAt(surprise(¬Happens[e, t̂]), t), t < now,succeeds

The formula says that the fact that Hans didn’t write a letter surprised us. This

shows that we get the correct results for the Bäuerle examples in a completely system-

atic way too.

5 Conclusion and Outlook

We argued that disambiguation may be non-monotonic in nature. We discussed ex-

amples of anaphora resolution involving a type conflict between anaphora and disam-

biguated antecedents. Since the anaphora picks up a reading which was discarded for

the antecedent, we apply a process of reconstruction to the antecedent to resolve the

type mismatch. We refer to this process as reambiguation.

Future work needs to address the generality and complexity of such reconstruction

processes. For instance, we argued that the resolution of the anaphora in example (38)

is achieved by a more complex computations than those involved in the analysis of the

examples in Section 4.2. However, (38) is certainly not the most complicated case one

has to face. Although the reconstruction process for the following example is beyond

the scope of this paper, we will nevertheless sketch a possible analysis in an informal

way.

192 Fritz Hamm and Torgrim Solstad

(52) Auf

in

Gemarkung

district

Schönau

Schönau

bei

at

Heidelberg

Heidelberg

wurde

was

ein

a

toter

dead

Fuchs

fox

gefunden,

found,

der

which

Tollwut

rabies

hatte.

had.

Deswegen

For this reason

wurde

was

der

the

Bereich

area

nördlich

north of

des

the

Neckars

Neckar

östlich

east of

der

the

Bundesstraße

federal highway

zum

to the

wildtollwutgefährdeten

wild-rabies-endangered

Bezirk

area

erklärt.

declared.
‘In the district of Schönau a fox was found which had died from canine madness.

For this reason, the territory which is north of the Neckar and to the east of the

federal highway was declared a wildlife rabies high-risk area.’

The discourse particle deswegen (for this reason) introduces a causal17 anaphoric rela-

tion between the first and the second sentence. Example (52) is informative about the

effect of the cause – namely the declaration of the territory north of the Neckar and east

of the federal highway as a wildlife rabies high-risk area – but is rather vage concerning

the reason for this effect.

Let us now assume that deswegen introduces a causal relation cause(φ,ψ) where ψ

(the effect) is given. Then an appropriate integrity constraint should trigger an abduc-

tive reasoning process which reconstructs the cause of the given effect. This is similar

to the examples considered in the body of the text. But in the case of sentence (52)

an additional complication is involved. Given only (52), the cause and therefore the

anaphoric relation to be reconstructed is not unique. Many facts are possible causes

for ψ in this case; for instance that a dead fox was found or that a dead fox which had

rabies was found or that a dead fox which had rabies was found in the district of Schö-

nau. Of course further context may rule out some of these possibilities but sentence

(52) is rather uninformative in this regard. Therefore, a formally precise analysis of

such examples requires techniques which are beyond those introduced in this paper.

A further generalization of the approach to anaphora resolution argued for in this

paper necessitates maps which correspond to dot objects discussed by Pustejovsky

(1995):

(53) Jonathan

Jonathan

Strout

Strout

hat

has

das

the

Buch

book

geschrieben,

written,

es

it

hat

has

539

539

Seiten

pages

und

and

ist

is

2004

2004

im

in the

Bertelsmann

Bertelsmann

Verlag

publishing house

erschienen.

appeared

‘Jonathan Strout wrote the book, it has 539 pages and was published by Ber-

telsmann.’

In order to resolve the anaphora es (‘it’) in example (53) a function mapping the con-

tent denotation of Buch (‘book’) to the physical manifestation reading of this noun is

required.

17Deswegen is composed of the anaphoric element des- and the (factively) causal preposition wegen.

For an extensive investigation of causality expressed by means of prepositional phrases (exemplified by

the German preposition durch) the reader is referred to Solstad (2007). In Solstad (2010) a DRT analysis

of the factively causal because of is presented, which is by and large equivalent to its German counterpart

wegen.

Reambiguating: on the non-monotonicity of disambiguation 193

References

Bäuerle, R., 1988. Ereignisse und Repräsentationen. Tech. rep., LILOG-Report 43.

Dekker, P., 1993. Transsentential Meditations. Ph.D. thesis, University of Amsterdam.

Dölling, J., 2003. Flexibility in adverbial modification: reinterpretation as contextual

enrichment. In Lang, Ewald, Claudia Maienborn, and Cathrine Fabricius-Hansen

(eds.), Modifying Adjuncts, pp. 511–552. Berlin/New York: Mouton de Gruyter.

Dowty, D., 1991. Thematic proto–roles and argument selection. Language, 67:547–619.

Egg, M., 2005. Flexible Semantics for Reinterpretation Phenomena. Stanford: CSLI Pub-

lications.

Ehrich, V. and I. Rapp, 2000. Sortale Bedeutung und Argumentstruktur: ung-

Nominalisierungen im Deutschen. Zeitschrift für Sprachwissenschaft, 19:245–303.

Feferman, S., 1984. Toward useful type-free theories I. The Journal of Symbolic Logic,

49:75–111.

———, 2008. Axioms for determinateness and truth. The Review of Symbolic Logic,

1:204–217.

Groenendijk, J. and M. Stokhof, 1990. Dynamic montague grammar. In Kálmán, L. and

L. Pólós (eds.), Papers from the second Symposium on Logic and Language. Budapest.

Hamm, F. and H. Kamp, 2009. Ontology and inference: The case of German ung–

nominals. In Roßdeutscher, A. (ed.), Disambiguation and Reambiguation, vol. 6 of

SinSpec – Working Papers of the SFB 732 “Incremental Specification in Context”, pp.

1–67. Stuttgart: SFB 732.

Hamm, F., H. Kamp, and M. van Lambalgen, 2006. There is no opposition between

formal and cognitive semantics. Theoretical Linguistics, 32:1–40.

Kamp, H. and U. Reyle, 1993. From Discourse to Logic. Dordrecht: Reidel.

Kowalski, R. A. and M. Sergot, 1986. A logic-based calculus of events. New Generation

Computing, 4:65–97.

Krifka, M., 1989. Nominalreferenz und Zeitkonstitution. München: Fink.

Lifschitz, V., 1994. Circumscription. In Gabbay, D., C. Hogger, and J. Robinson (eds.),

Handbook of Logic in Artificial Intelligence and Logic Programming: Vol 3. Oxford:

Clarendon Press.

McCarthy, J. and P. Hayes, 1969. Some philosophical problems from the standpoint

of artificial intelligence. In Michie, D. and B. Meltzer (eds.), Machine Intelligence 4.

Edinburgh: Edinburgh University Press.

Moens, M. and M. Steedman, 1988. Temporal ontology and temporal reference. Com-

putational Linguistics, 14:15–28.

194 Fritz Hamm and Torgrim Solstad

Nienhuys-Cheng, S-H. and R. de Wolf, 1997. Foundations of Inductive Logic Program-

ming. New York, Berlin: Springer.

Poesio, M., 1996. Semantics ambiguity and perceived ambiguity. In van Deemter, K.

and S. Peters (eds.), Semantics Ambiguity and Underspecification, pp. 159–201. Stan-

ford: CSLI.

Pustejovsky, J., 1995. The Generative Lexicon. Cambridge: MIT Press.

Reyle, U., 1993. Dealing with ambiguities by underspecification: Construction, repre-

sentation and deduction. Journal of Semantics, 10:123–179.

Rossdeutscher, A. and H. Kamp, 2010. Syntactic and semantic constraints in the for-

mation and interpretation of ung-nouns. In Alexiadou, Artemis and Monika Rathert

(eds.), The Semantics of Nominalizations across Languages and Frameworks. Berlin:

Mouton de Gruyter.

Shanahan, M., 1997. Solving the Frame Problem – A Mathematical Investigation of the

Common Sense Law of Inertia. Cambridge, MA.: MIT Press.

Solstad, T., 2007. Mehrdeutigkeit und Kontexteinfluss. Oslo: Unipub/Faculty of Hu-

manities, University of Oslo.

———, 2010. Some new observations on because (of). In Aloni, M. and K. Schulz (eds.),

Amsterdam Colloquium 2009. Springer.

van Eijck, J. and H. Kamp, 1997. Representing discourse in context. In van Benthem, J.

and A. ter Meulen (eds.), Handbook of Logic and Language. Amsterdam: Elsevier.

van Lambalgen, M. and F. Hamm, 2005. The Proper Treatment of Events. Malden: Black-

well.

Fritz Hamm and Torgrim Solstad

Institute for Natural Language Processing,

University of Stuttgart

{fritz,torgrim}@ims.uni-stuttgart.de

