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From music to dance: The inheritance of semantic
inferences
Pritty Patel-Grosz • Jonah Katz • Patrick Georg Grosz • Tejaswinee Kelkar •
Alexander Refsum Jensenius

Abstract This paper looks at short musical segments and motion-capture anima-
tions of body movements that were generated spontaneously in response to those
musical segments. Building on recent research on music semantics, we ask whether
abstract meaning inferences that listeners draw on the basis of the musical segments
are also inherited by the corresponding body movements. We present an experiment
in which participants rate how well the emotion terms Angry, Bored, Calm and
Excited are expressed by the auditory stimuli and visual stimuli. The experimental
findings indicate a correlation between the sounds and animations with regards to
the inferences that participants draw.
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1 Overview
Music can give rise to abstract semantic inferences about music-external
situations and/or emotions. We ask whether dance, defined as music-
accompanying body movement for the scope of this paper,1 also gives rise
to similar abstract semantic inferences. Focusing on emotional meaning, we
experimentally test whether inferences from a given musical sequence are
inherited by body movement produced in response to this musical sequence.
Our results indicate that such an inheritance of semantic inferences does

1This glosses over dance that does not accompany music, see, e.g., Patel-Grosz et al.
(2018; to appear).
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occur. This finding is consistent with a view where abstract meaning can be
communicated in different modalities, here music and dance.

2 Theoretical underpinnings – from music to dance semantics
Recent research in formal semantics argues that music can give rise to
inferences about music-external objects (so-called virtual sources or denoted
objects), which allow listeners to infer descriptive or narrative meaning,
Schlenker (2017; 2019a; 2021). A typical example is found in Saint-Saëns’s
Carnival of the Animals, where a low-pitched melody is mapped onto a large
object, namely an elephant (Schlenker 2017: 11-12). By contrast, a high-
pitched version of the same melody may instead give rise to the inference
that there is a small object in the narrative – for example, a mouse. Such
inferences are iconic in that the denotation of the meaning-bearing object
– in this case the music – operates on its form. To illustrate, we can apply
Greenberg’s (2021) formalism to the above example and posit the iconic
semantics in (1) for object-denoting pitch.

(1) For a piece of musicM, a constant k in a narrative situation s, ⟦M⟧
is satisfied by s only if:
size-category(𝜄x.x is an object in s) = k / pitch(M)

For Greenberg, an iconic semantics is defined such that the form of the sign,
symbolized by the bold-typed M in (1), also occurs in its denotation. When
we interpret a piece of musicM with regards to a narrative situation s, we can
draw an inference that the pitch of M is inversely mapped onto the size of a
salient object in s. The higher the pitch, the smaller the object. This inverse
mapping of pitch and size can be implemented by dividing a contextually
given constant k by the pitch of M, which yields an abstract numerical
size category. Assuming size categories rather than exact sizes is needed to
account for the abstractness of such inferences. A similar difference between
a high pitch and a low pitch (e.g., 880 Hz vs. 110 Hz) may be mapped onto
an elephant (the large object) vs. a mouse (the small object), but it may
just as well be mapped onto a hawk (the large object) vs. a sparrow (the
small object), or onto a landscape (the large object) vs. a house (the small
object). If we take our constant k to be 880, then a pitch of 880 places the
denoted object into size category 1 (≈ small), whereas a pitch of 110 places
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the denoted object into size category 8 (≈ big).
When all inferences of this type are met for a situation s in a given

narrative, then we can say that ⟦M⟧ is true in s (or ⟦M⟧ is satisfied by s).
This means that a low-pitched melody is true of a narrative situation in
which we are dealing with a large object, and false of a narrative situation
in which we are dealing with a small object (relative to a baseline of what
counts as large or small in the narrative). Such inferences are by their very
nature abstract, i.e., it does not matter whether the object is an elephant, a
landscape, or, even more abstractly, a magnificent idea.

Crucially, the properties of music that give rise to such iconic inferences
(pitch, loudness, speed, silence, dissonance, change of key; see Schlenker
2019b: 433-436) have counterparts in music-accompanying movement, for
example dance. An observation from choreomusicology suggests that musi-
cal pitch corresponds to the direction of gestures in space in body movement,
in that, for example, high pitch is correlated with upward movement whereas
low pitch is correlated with downward movement (Mason 2012: 10); see
Kelkar & Jensenius (2018) for critical discussion. Alternatively, Gadir (2014:
55), in a study of electronic dance music, observes that the musical pitch
inversely correlates with the size of the body parts that dancers use to move
to the music, i.e., lower pitch is correlated with bigger movements (of the
legs, hips, etc), whereas higher pitch is correlated with smaller movements
(of the arms, hands, etc). We can refer to this difference in terms of the
amplitude of the body movement. We can thus posit the lexical entry in (2)
for a given body movement D, which differs from (1) in that the size of the
denoted object is now calculated by multiplying (rather than dividing) the
constant k with the amplitude of the dance movements.

(2) For a music-accompanying movement D, a constant k in a narrative
situation s, ⟦D⟧ is satisfied by s only if:
size-category(𝜄x.x is an object in s) = k * amplitude(D)

The fact that (1) and (2) are non-isomorphic is unsurprising, since musical
inferences are typically attributed to natural associations between sound
qualities and their sources (Schlenker’s 2019b: 433-436 reasons for musical
inferences). Bigger objects tend to create sounds at a lower pitch than smaller
objects. For body movements, the same association naturally does not hold:
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bigger objects will often create bigger movements than smaller objects (in
terms of the absolute amplitude of the movement, not relativized to the
given object’s baseline), simply by virtue of their size. This may in turn have
implications for the perception of bodymovement perceived to communicate
meaning: if such a body movement is bigger, onlookers plausibly infer that
the denoted object is also bigger, and so forth.

We take such analogies between music and body movement as our point
of departure and present an experimental study that addresses the following
questions: (i.) do abstract body movements (e.g. dancing or moving sponta-
neously to a piece of music) give rise to semantic inferences? (ii.) are there
parallels between the inferences that we draw from hearing music, and the
inferences that we draw from seeing abstract body movement? (iii.) if we
perceive body movement D that was initially performed as an interpreta-
tion of a short musical sequence M, is there a correspondence between our
inferences from D and our inferences from M?

To investigate these questions, we used materials from an experiment
by Kelkar & Jensenius (2018).2 In their study, participants were asked to
trace short musical segments with their hands while standing centrally in
a motion capture lab and being filmed by eight motion capture cameras;
this gave rise to abstract music-accompanying body movement (i.e., dance),
consisting in particular of upper-body movements. More specifically, we
could classify the movement as a music-responsive body movement, in that it
was caused by the music. Our own experiment is set up to test the hypothesis
that body movements D which are performed in response to a musical
sequence M ‘inherit’ properties of M, thus giving rise to the same or similar
semantic inferences. We can illustrate this question for our toy example in
(1)-(2): assume that a musical sequence M triggers the inference that the
denoted object is big; the question is then whether a body movement D
that was evoked by M would also trigger the inference that the object is
big. Specifically, would a lower pitch of M trigger more expansive body
movements in D?

Two qualifications are in place before we proceed with the discussion of
our experiment. The first concerns the distinction between perception and
production of music and dance; the second concerns the nature of inferences

2See Kelkar (2019) for more detailed discussion of the stimuli.
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that we investigate.
In our experiment, we probe participants’ perception of musical sequ-

ences and body movements. While both are produced intentionally (in the
case of our stimuli), it is not necessarily the case that their producers consider
the inferences that listeners and onlookers may draw. To use our previous
example of musical pitch, a composer may intend for a low pitch melody
to symbolize a large object, but may also lack any such intention; listeners
would draw the exact same inference in either case – namely that the music
describes a large object. The same reasoning applies to body movements.

As for the nature of the inferences, we aimed to test whether participants
converge on a given meaning for a given stimulus, and whether there is
a correspondence between the meaning that was assigned to a musical
sequence and the body movement that ensued from it. The meanings that
we tested in our experiment are the meanings associated with the emotion
terms Angry, Bored, Calm and Excited. We used emotion terms as opposed
to concrete properties such as size (cf. the toy example in (1)-(2)), to avoid
participants directly interpreting properties of the music or movement;
furthermore, there is a precedent of probing emotive meanings in music and
movement in the findings of Sievers et al. (2013). It is worth emphasizing that,
by design, this task does not directly probe for the descriptive/referential
musical inferences proposed in Schlenker (2019b); these are more physical
in nature, amounting to a description of the denoted object as big or small,
more or less energetic, closer or further away, etc. As a consequence of
this methodological choice, our conclusions apply primarily to emotional
meaning, and it is an open question whether they carry over to referential
semantics.3

3 Experimental design
3.1 Stimuli

Owing to the nature of materials from Kelkar & Jensenius (2018), we depart
from toy inferences of the type in (1) and (2). We use six combinations of
short musical sequences (between 1.45 seconds and 5.0 seconds in duration)

3On the difference between emotional meaning and referential meaning, see, e.g., Meyer
(1956), Patel (2008), and Juslin (2013). See Schlenker (2017: 28-33, 2019a: 86-95) on how they
may be connected.
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and video animations of motion capture renderings of movements carried
out to accompany those sequences by the study participants of Kelkar &
Jensenius (2018). Our musical sequences thus correspond to the original
experimental stimuli of Kelkar & Jensenius, one of which is illustrated in
Figure 1.
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Figure 1 Waveform (stereo) and spectrogram from experimental item b, an operatic
soprano voice singing an ascending major-scale melisma on an [e]-like vowel over
a much quieter piano accompaniment.

Our visual stimuli were selected from the Kelkar & Jensenius’s experi-
mental results, in order to create music-video pairings. The type of motion
capture-based animations used in our experiment is illustrated in Figure 2,
which is a movement sequence that was produced in response to the musical
stimulus in Figure 1.4

The six combinations of auditory and visual stimuli that we used were
selected pseudo-randomly from the set of 32 combinations available to us.
While we tried to avoid stimuli that made a particular emotion especially
salient, we did not have any evidence or prior expectation with regards

4The complete set of visual stimuli can be found at the following link:
https://www.youtube.com/playlist?list=PL0dCnZzwa9N4aVfOTZce-WHVMPg5dYbdI
The auditory stimuli correspond to the auditory stimuli 02, 13, 19, 27, 29,
and 30 in Kelkar & Jensenius (2018) (direct download link for ZIP file:
https://www.mdpi.com/2076-3417/8/1/135/s1?version=1516685118), renumbered to
01, 02, 03, 04, 05, and 06 for our experiment.

https://www.youtube.com/playlist?list=PL0dCnZzwa9N4aVfOTZce-WHVMPg5dYbdI
https://www.mdpi.com/2076-3417/8/1/135/s1?version=1516685118
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Figure 2 Stills of animations created from motion-capture data from experimental
item 2.

to the emotion association of our six combinations; they were thus not
counterbalanced with respect to emotion association.

All participants listened to the six sound files and separately watched the
six silent animations; participants did not watch combinations of animations
and sound files. Stimuli were organized in two blocks, one with only audio
stimuli and one with only silent animations. The order of the two blocks
was counterbalanced across subjects and stimuli were presented in random
order within each block. Subjects heard or saw each stimulus four times,
once with each of the emotion descriptors described below.

We used a within-subject design to maximize the power of the experiment.
In this design, each subject watches each video stimulus and hears each
audio stimulus multiple times, once with each emotional descriptor. This
allows us to gather more data from fewer subjects, and to isolate the audio
vs. video modality as an experimental manipulation without also changing
the identity of subjects between conditions. The main potential drawback
to such designs is the possibility of ‘contamination’, where completing one
condition influences the behavior of a subject on following conditions. To
adjust for such effects, we counterbalanced the order of conditions across
subjects and incorporates the effect of task order into the statistical analysis
reported below.

3.2 Task
Participants were prompted to rate on a slider scale from 0 to 100 how
well the sound / animation expressed one of the following emotions: Angry,
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Bored, Calm and Excited – with 1 trial for each emotion (2x6x4 trials in total).
Participants were able to play the sounds and animations as many times
as they desired. The experiment took about 15 minutes to complete. The
emotion terms are based on the four quadrants of Russell’s (1980) circumplex
model of emotion, where Angry is [Valence: negative, Arousal: positive],
Excited is [Valence: positive, Arousal: positive], Calm is [Valence: positive,
Arousal: negative], and Bored is [Valence: negative, Arousal: negative].

3.3 Participant recruitment
Participants were recruited via announcements on social media and vari-
ous online fora devoted to music, dance, and linguistics. The experiment
was carried out online in the PCIbex environment (Zehr & Schwarz 2018).
Before the experiment, participants filled out a questionnaire on their de-
mographic, linguistic, and musical background. Both native and non-native
speakers of English participated in the study; only participants who reported
being native speakers of English are analyzed here, since emotion words
were provided in English, and cross-linguistic variation cannot be excluded.
The results reported on below are for the 22 native English speakers who
completed the experiment.5

3.4 Hypotheses
Our experiment tests several hypotheses related to (i-iii) in Section 2. In
particular, we examine: (a.) whether participants draw consistent inferences
about particular stimuli, i.e., if stimuli with high ratings for Angry received
low ratings for Calm, and so forth; (b.) whether some of the information that
auditory stimuli convey can be recovered from movement stimuli that were
created as a response to those sounds. Positive answers to these questions
would support the idea that music and music-accompanying movement
encode descriptive information in comparable ways, i.e., that participants
draw the same types of inferences about musical and movement stimuli.

4 Results
The first question we examined is whether listeners respond to auditory and
visual stimuli in a broadly comparable way, bearing on (i) and (ii) above,
repeated here in simplified form:

5The data set is available at https://doi.org/10.17605/osf.io/abgz4

https://doi.org/10.17605/osf.io/abgz4
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Auditory Visual
Angry Mean 34 46

SD 28 33
Bored Mean 28 33

SD 30 29
Calm Mean 26 29

SD 29 26
Excited Mean 52 49

SD 36 31

Table 1 Mean slider ratings and standard deviations for auditory and visual stimuli
on the four descriptors in the study. Data pooled across all stimulus items and
subjects.

(i.) do abstract body movements give rise to semantic inferences?
(ii.) are there parallels between inferences from hearing music and infer-

ences from seeing abstract body movement?

Table 1 shows the mean responses and standard deviations to each of
the four emotion descriptors for auditory and visual stimuli. Overall rat-
ing levels are similar for the two modalities, as are the relative patterns
amongst descriptors. Participants exhibit a tendency to assign higher scores
for high-arousal descriptors (Angry, Excited) than low-arousal ones (Bored,
Calm); this may be an artifact of the stimuli selection, since stimuli were not
counterbalanced with regards to emotion association (see section 3). There
are no gross differences between the two modalities here, suggesting that
participants are as likely to infer emotional content from movement as they
are from music.

Next, we ask if individual auditory and visual stimuli are subject to
consistent inferences from participants. Figure 3 shows two attempts to
validate the response space.

The left plot in Figure 3 tests a form of split-half reliability, where what
is being split into random halves is the participant pool. The question is
whether, for each stimulus, when a randomly-selected half of participants
infer high levels of some descriptor from that stimulus, do the other half do
the same? The answer is an emphatic yes (r = 0.91), showing that partici-
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Figure 3 Left: correlation between two randomly-selected halves of the participant
pool on the scores assigned to each combination of stimulus and descriptor. Right:
Correlations between ‘opposite’ descriptors, computed across all stimuli within
each participant.

pants broadly agree on how much the terms Angry, Calm, Excited, and Bored
are associated with particular stimuli. The right plot in Figure 3 summarizes
within-subject correlations between ‘opposite’ descriptors. Our assumed the-
ory (Russell 1980) situates the four descriptors in terms of a two-dimensional
space of valence and arousal. If this is valid, we expect strong negative corre-
lations between descriptors differing in both valence and arousal. As shown
in the right plot, correlations are almost uniformly negative, some of them
quite strongly so. This indicates, e.g., that when a participant infers high
Angry content from a particular stimulus, they are likely to infer low Calm
content from that stimulus.

Finally, we ask whether the inferences participants draw from visual
stimuli tend to resemble the inferences they draw from the auditory stimuli
that inspired the motion in the video animation, corresponding to (iii) in
section 2. That is, do participants implicitly recover information frommotion
about the sound that the motion was intended to accompany? Figure 4 shows
audiovisual correlations, treating each combination of stimulus, descriptor,
and participant as a separate observation. The observed correlation suggests
that motion can be used to encode and decode some information from
an auditory stimulus. That said, the effect here is not particularly large,
suggesting that about 5% of the variance associated with visual scores can be
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accounted for by taking into account the audio scores of the corresponding
items.
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Figure 4 Correlation between slider scores for auditory stimuli and the visual
stimuli that were created in response to them. Line shows general linear model.

While the scatterplot and simple correlation analysis above give us a
useful summary of the data, they also ignore several aspects of the design that
must be taken into account in a statistical analysis. In particular, our study
has several crossed random variables, variables that are sampled from some
larger population of interest. Here, we have asked a number of participants
to rate a number of specific stimuli with regard to four particular linguistic
terms used to describe emotions. Participant, stimulus item, and linguistic
descriptor are all random variables, and fully analyzing the results requires
a model that takes into account differences between participants, items, and
descriptors while attempting to generalize across these variables.

To examine whether audiovisual correlations are robust across stimuli,
descriptors, and subjects, we fit a linear mixed-effects regression model
using the lme4 package in R (Bates et al. 2015). This type of model (also
referred to as a ‘multi-level’ or ‘hierarchical’ model) is specifically designed
for analyzing studies with multiple random variables in a crossed or nested
design. It allows us to examine the fixed effects of interest, those that are
systematically manipulated in the design of the experiment, while explic-
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itly modeling variation associated with random variables. The dependent
variable in our model was the slider-score for visual stimuli, using the slider
score for the corresponding auditory stimulus as a predictor. The model also
included fixed effects of the order in which the two tasks were performed
(auditory first vs. visual first), as well as its interaction with auditory scores.
The model included random intercepts for item, subject, and descriptor. We
tested random effects for model improvement using the likelihood-ratio
test; the by-item random slope of auditory score significantly improved fit
and was retained. All slider scores were centred around the midpoint of the
scale, to aid interpretation of fixed effects. The significance of fixed effects
was gauged by dropping parameters and using the likelihood-ratio test. A
summary table of the final model is shown below.

Random effects Var. SD
Sub: intercept 23.7 4.9
Item: intercept 16.0 4.0
Item: audio response 0.07 0.26
Descriptor: intercept 99.2 27.1
Fixed effects 𝛽 SE t 𝜒2 p
Intercept -0.12 5.96 -0.02
Audio response 0.29 0.12 2.32 4.73 0.03
Order: video first -13.68 3.63 -3.77 11.64 <0.001
AudResp x VidFirst -0.19 0.08 -2.32 5.33 0.021

Table 2 Summary of linear mixed-effects regression model of responses to video
stimuli.

In the auditory-first order, auditory score was a significant (positive) pre-
dictor of visual score, as shown by the second fixed effect. On average, for
every slider-point higher that a subject rated a sound for a particular af-
fect word, they rated the corresponding video file 0.29 slider-points higher.
Visual scores were about 14 points lower on a 100-point scale when the
visual condition was completed first than when the auditory condition was,
as shown by the third fixed effect. And the correlation between visual and
auditory scores was substantially lower when the visual condition was com-
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pleted first, as shown by the interaction between auditory rating and task
order. It appears, then, that participants draw inferences from animations of
movements that mirror inferences from the auditory stimuli that inspired
those movements, but they do so much more reliably when the auditory
stimuli are presented first than when the visual stimuli are.

The random effect of descriptor significantly improved model fit, with the
low-arousal descriptors assigned negative intercepts and the high-
arousal ones assigned positive intercepts. This matches the observation
from 1 that the high-arousal words are assigned higher scores in general
than the low-arousal ones. The by-item random slope of audio score also
significantly improved model fit. This means that some particular stimuli
generated tighter correlations across audio and visual modalities than other
stimuli did.

While the model here finds a significant positive effect of audio score on
visual score, showing that some information is carried over between the two
modalities, the scatterplot and statistical model should make it clear that this
is not the only, the biggest, or the most important factor affecting scoring.
In particular, while the general effect is robust enough to be unlikely to arise
by chance, we’ve also seen two factors here that significantly affect the size
of the correlation: particular stimulus items and task order. As a follow-up,
we examine each of these in turn.

To further examine differences by stimulus item, slider ratings for the
4 descriptors were forced onto a 2-dimensional Euclidean valence-arousal
space. This was done by averaging the ‘opposite’ descriptors onto a linear
scale, then rotating the resultant two coordinates 45 degrees so as to weight
the high-arousal descriptors for one axis and the high-valence descriptors
for the other. This is a fairly naïve procedure and we do not claim absolute
validity for the results, but they do allow us to inspect separation between
the stimuli and correspondence between auditory and visual stimuli. Results
are shown separately for each auditory stimulus and the corresponding
visual stimulus in Figure 5.6

Comparing the plots vertically, we see that several of the stimuli occupy
6See footnote 4 for link to the materials; for improved readability, Figure 5 uses the

letters a, b, c, d, e, and f, instead of numerals; the letters map onto the numerical order of
the original stimuli (02, 13, 19, 27, 29, and 30).
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Figure 5 Ratings for each stimulus in a two-dimensional valence-arousal space.
Each point represents one participant rating one stimulus on all 4 descriptors.
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Figure 5 Ratings for each stimulus in a two-dimensional valence-arousal space.
Each point represents one participant rating one stimulus on all 4 descriptors.
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overlapping ranges in the affective space (e.g., auditory b, e, and f). Nonethe-
less, each stimulus is located almost entirely in 1 or 2 quadrants (possibly
with the exception of video a), and different stimuli differ in which quadrants
they mainly occupy. Turning our attention to the horizontal comparisons
in Figure 5, we observe that some stimuli have closer audiovisual corre-
spondences than others, as indicated by the random slopes in our statistical
model. In particular, both the random slopes returned by the model and the
visualizations above suggest that stimuli c and f are judged quite similarly
across modalities, while b is quite different (the other three items are inter-
mediate). So one reason why the main effect of audiovisual correlation in our
study is not extremely large is that it is not fully robust across items: some
items have high correlations, the model judges that correlations are gener-
ally positive, but some items have smaller correlations or none at all. There
are no obvious or straightforward properties that separate the stimuli with
high audiovisual correspondence from those with less correspondence. For
instance, stimuli b and d, which both display clear audiovisual mismatches,
are not situated in similar regions of the two-dimensional space, nor are they
especially dissimilar in their positions from other stimuli that display tighter
correspondence. So at this point, we cannot draw any clear conclusions
about what makes particular stimuli transmit affective information more
effectively than others.7 One possibility worth following up on, however,
is the duration of stimuli: items c and f, which have the highest audio and
video correlations, are also the two longest stimuli. It is possible that as
visual and auditory stimuli grow longer, subjects are more certain about
their affective content and therefore able to ‘decode’ such content more
reliably across modalities.

Figure 6 examines the effect of task order on audiovisual correlations. The
statistical model showed that subjects who completed the auditory rating
task first had higher correlations with their ratings on the visual task. Figure
6 clearly reflects this difference. It also shows that correlations between
matched auditory and visual stimuli are somewhat more variable for those
who rated the visual stimuli first.

7One open issue beyond the scope of this paper concerns a formal background theory
of how movement systematically reacts to sound and music, and how musical properties
are preserved in music-responsive movement.
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visual stimuli, separated by task order.

5 Discussion
Our results suggest that inferences from music and inferences from body
movement are coherent, consistent, and mutually informative. This is in
line with a view where (i.) body movement gives rise to similar inferences
to what we find in music, (ii.) there are parallels between the inferences
from music and the inferences from body movement, and (iii.) listeners can
recover information about inferences from music just from viewing body
movement based on the music. While the effect of cross-domain inference
was detected in the study and is statistically significant, it is not a particularly
large effect, and does not generalize equally across all stimuli, nor across
task orders.

The finding that correlations are more robust when the auditory condition
occurs before the visual condition was not expected. We had anticipated that
there might be some effect of order, but had no particular hypothesis about
what that would be. A post-hoc hypothesis that might explain this finding
involves the fact that, according to Schlenker’s (2017; 2019a; 2021) theory,
musical stimuli give rise to inferences on the physical movement of virtual
sources / denoted objects (among other things). The inferred semantics of
the auditory stimuli, when presented first, could thus activate various kinds
of movement schemata; that would facilitate further processing of actual



236 P. Patel-Grosz, J. Katz, P. Grosz, T. Kelkar, & A. Jensenius

visual representations of movement. Because the motion-capture animations
are straightforward representations of people moving, the effect of order
could reflect such a facilitation in the auditory-first condition. Conversely,
there is no reason to think that viewing movements activates auditory
and/or musical schemata, so the auditory condition would not benefit from
this facilitation after viewing movements. This fundamental asymmetry,
if replicated in future work, could thus be seen as support for Schlenker’s
hypothesis that musical stimuli are interpreted in terms of physical, spatial
movements.

The study also found significant variation across the six stimuli used
here in how closely auditory and visual scores tracked one another. While
there was no obvious generalization about the acoustic, visual, or perceived
affective properties of stimuli that yielded closer multi-modal correspon-
dence, this finding suggests that investigating such variation could be an
interesting avenue for further research. Developing a detailed theory of
how low-level auditory or visual cues affect valence and arousal may yield
insights into cases where affective information is easier or harder to transmit
across modalities.
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