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Interpreting gradable adjectives: Rational
reasoning or simple heuristics?
Alexandre Cremers

Abstract Gradable adjectives can be categorized into relative adjectives (‘tall’, ‘far’,
‘happy’), which are vague and context-dependent, and absolute ones (‘dry’, ‘dirty’,
‘full’), which are much less context-dependent and can receive a strict interpretation.
Different explanations have been proposed in the literature to explain this split,
most saliently: a lexical approach, where the category is determined by properties
of the scale on which the adjectives measures entities (Kennedy & McNally 2005),
and a pragmatic approach, which refers to properties of the distribution of measure-
ments in the comparison class (Lassiter & Goodman 2013: a.o.). A related debate
concerns the nature of the cognitive processes responsible for integrating contex-
tual information: simple heuristics or sophisticated rational reasoning? Pragmatic
approaches are split between theories which assume rationality at the speaker’s
level and evolutionary theories which instead focus on long-term optimality, while
lexicalist approaches tend to rely on heuristics. The experimental literature has
established an effect of the comparison class on the interpretation of relative ad-
jectives, but it is still unclear whether it can determine an adjective’s category,
and rational models have not been directly compared with simpler heuristics. We
present an experiment using nonce adjectives (to control for lexical information
and world knowledge), in which the range of the scale is always closed. Comparison
classes vary in the probability mass they place at scale boundaries, a factor which
probabilistic pragmatic accounts take to be the determining factor. We found that
simple heuristics perform as well as the best rational model, and that the degree
distribution within the comparison class can lead to categorical distinctions in
the interpretation of nonce adjectives, although it remains unclear whether the
resulting categories constitute genuine absolute and relative meanings.

Keywords gradable adjectives · degree semantics · vagueness · probabilistic prag-
matics

A. Cremers, Vilniaus Universitetas, https://alexandrecremers.com/

In Gabriela Bîlbîie, Berthold Crysmann& Gerhard Schaden (eds.), Empirical Issues in Syntax and Semantics 14,
31–60. Paris: CSSP. http://www.cssp.cnrs.fr/eiss14/
© 2022 Alexandre Cremers

https://alexandrecremers.com/
http://www.cssp.cnrs.fr/eiss14/


32 A. Cremers

1 Gradable adjectives, scales, and comparison classes
The class of gradable adjectives can be divided between relative adjectives,
such as ‘tall’ or ‘far’, which are highly context-dependent and vague, and
absolute adjectives, the meaning of which is much more rigid (Unger 1971;
Bolinger 1972). Absolute adjectives are further divided between minimum
standard, such as ‘dangerous’, and maximum standard, such as ‘dry’. Infor-
mally, the former conveys that an object presents at least some danger, while
the latter conveys that an object is fully dry.

Kennedy & McNally (2005) argued that these distinctions stem from
differences in the structure of the scales to which these adjectives refer.
Relative adjectives map individuals onto open scales, with no definite bound-
aries, while absolute adjectives map individuals onto closed scales, with
a strict minimum, maximum, or both. Whether the closed scale is upper-
or lower-bound further distinguishes between minimum and maximum-
standard absolute adjectives. Scales that are fully closed tend to give rise to
maximum-standard adjectives.

For Kennedy & McNally (2005), these distinctions are a matter of lexi-
cal semantics, in that the adjective encodes the type of scale to which it
maps entities (as the range of the measure function it denotes), thereby
determining its class. The class, in turn, affects other lexical properties of
the adjective, such as the modifiers it can combine with. For instance, only
maximum-standard adjectives can combinewith adverbs such as ‘completely’
or ‘almost’ (which make reference to an endpoint).

A point often raised against the lexical approach is that lexically-encoded
scales do not always match the scale we would intuitively associate to an ad-
jective. For instance, the cost scale associated with ‘cheap/expensive’ should
have a clear minimum: free items. Yet, ‘completely cheap’ sounds deviant
and, to the extent that we would accept it, would not intuitively mean
‘free’. This suggests that the underlying scale determined by the adjective is
not our intuitive notion of cost, lower-bound by zero, but a more abstract
scale with no lower end, e.g., a logarithmic scale (Kennedy 2007). While
this observation can at first be seen as an argument in favor of the lexical
semantics idea, it may actually threaten the whole enterprise. If apparent ex-
ceptions to the rule that scale boundaries determine the class of the adjective
can be circumvented by postulating ad hoc scales, the whole proposal may
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become circular. Wellwood (2020) proposes to save the lexical semantics
approach from unfalsifiability using a two-stage system of semantic inter-
pretation, where linguistic interpretations are first mapped to non-linguistic
thoughts, which in turn can be assigned truth-values. She argues that such
non-linguistics representations are needed anyway, and can in principle be
tested independently. In the case of ‘expensive’, the assumption that our
(non-linguistic) concept of price excludes 0 could indeed be independently
motivated (see ‘zero-price effect’, Shampanier & Mazar & Ariely 2007).

In the same vein, McNally (2011) proposes that the difference between
relative and absolute adjectives corresponds to different ways of categorizing
objects. Relative adjectives would cluster them according to similarity with
one another (which requires a comparison class), while absolute adjectives
would use rule-based categorization. In this view, the crucial feature is not
the scale structure anymore, but background knowledge about the dimension
encoded by the adjective, which decides whether a rule can be derived or
whether a comparison class is needed.

Alternatively, recent Bayesian pragmatics accounts of gradable adjectives,
while drawing much of their inspiration from Kennedy & McNally (2005)
and subsequent work, offer a competing view in which the comparison
class, rather than the lexical semantics of the adjective, fixes the properties
of the scale, and thereby determines the class of the adjective (on a case-
by-case basis). The central idea of Bayesian pragmatics is that listeners
interpret utterances by updating their prior beliefs with the information
provided by the speaker (Frank & Goodman 2012). Lassiter & Goodman
(2013: henceforth L&G) propose to model scale boundaries with prior beliefs
where significant probability mass is located at one or the other end of the
range of degrees. The adjective only provides a measure function (i.e. a
function from entities to degrees), and prior beliefs about these entities is
what ultimately determines whether the resulting scale is open or closed.
Coming back to the ‘expensive/cheap’ example, if we are discussing the
purchase of a new fridge, we would typically consider the range of prices
for new fridges, which clearly does not extend all the way down to the
theoretical lowest price of zero. In this framework, theoretical boundaries
on a scale (the range of the measure function denoted by the adjective) are
irrelevant; what matters is the distribution of degrees in the comparison
class (i.e. the image of the comparison class by the measure function). These
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accounts therefore claim to make lexical stipulations superfluous.
This debate raises about a secondary question about the exact nature of

the process that maps comparison classes onto adjective thresholds. Accord-
ing to McNally (2011), this process is a general similarity-based clustering
and only plays a role for relative adjectives. There is no consideration of
whether the resulting classification is optimal for language use. On the other
hand, L&G and Qing & Franke (2014a: henceforth Q&F) assume that a single
process, highly specialized for linguistic purposes, is responsible for both
relative and absolute interpretations. They differ in that L&G see this process
as explicit pragmatic reasoning occurring every time a gradable adjective is
uttered, whereas Q&F adopt an evolutionary approach, in which the opti-
mization of the mapping from comparison class to threshold happens at the
level of a linguistic community, not internally for each agent (at the level of
agents it could have solidified into a simple heuristics).

Previous experimental work (Syrett et al. 2004; Schmidt et al. 2009; Solt
& Gotzner 2012; Qing & Franke 2014b, a.o.) shows that the distribution of
degrees within a comparison class does affect the threshold of adjectives,
but the link between closed scales and absolute interpretations has not been
explicitly tested and simple heuristics have not been directly compared
with Bayesian models. Xiang et al. (2022) recently showed that existing
Bayesian models offer a good fit of the communicative effect of relative
and absolute gradable adjectives, but fail to capture truth-value judgments,
unless supplemented with semantic conventions. Meanwhile, most modeling
work follows L&G in assuming that the prior distribution alone determines
the class of the adjective (Q&F; Tessler & Lopez-Brau & Goodman 2017;
Bennett & Goodman 2018).

We therefore propose a new experiment with two main goals. The first
is to adjudicate between the Bayesian pragmatics view, in which the dis-
tribution of degrees in the comparison class is sufficient to determine the
class of an adjective, and the lexical semantics view, which stipulates that
the theoretical boundaries of the scale are the deciding factor (even if the
comparison class does not reach these boundaries). To do so, we strip all
world knowledge and lexical information by using nonce adjectives and
fictional measures, and observe whether a categorical distinction between
relative and absolute adjectives can emerge nonetheless. The second goal is
to test explicit quantitative accounts of gradable adjectives. Several different
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types of models have been proposed: simple heuristics (Schmidt et al. 2009;
Schmidt 2009), rational reasoning (L&G), and evolutionary models (Q&F,
Correia & Franke 2019). By collecting a large enough dataset, we will be
able to systematically compare models from each category.

2 Experiment
2.1 Methods

We tested the interpretation of nonce adjectives in the presence of explicit
comparison classes which each comprised 20 planets, for which we gave
fictional measurements of the dimension measured by the adjectives. The
use of nonce adjectives ensured that only information about the scale and
the comparison class was available to determine whether an adjective is ab-
solute or relative. All measurements were expressed in percentages (thereby
fixing clear theoretical boundaries for all scales), and the 20 planets in the
comparison class corresponded to the 21-quantiles of a beta-distribution
with possible inflation in 0 or 1 to represent closed scales. The experiment
was run on Alex Drummond’s Ibex Farm.

After validating the consent form, participants received instructions
which included the introduction text in (1) as well as three example items
which drew their attention to the comparison class and the fact that some-
times a clearcut answer wasn’t possible.

(1) An advanced alien civilization from a distant galaxy has explored
all the planets in their star system as well as many planets orbiting
neighboring stars. They have classified these planets into a number
of categories and have measured different properties.

In this survey, you will see some of these measurements for some
categories of planets, and we will ask you to tell us how much you
agree with statements about individual planets.

After reading the instructions participants saw three training items simi-
lar to the examples to help them familiarize with the task. In each trial, they
were asked to judge the applicability of a predicate containing an adjective
to an element from the comparison class, using a continuous slider as shown
in Figure 1. The slider followed the cursor and its position was recorded on
the first click to make the task less tedious. For each participant, we created
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Figure 1 Example trial with a Lower-bound comparison class (many items are at or
close to 0%).

8 comparison classes by sampling parameters from uniform distributions
with ranges given in Table 1 (with probability distributions corresponding
to lower-, upper-, double-bound and unbound scales in the Bayesian prag-
matics literature). Each comparison class was paired with a nonce-adjectives
from Table 2. For each comparison class, we tested the applicability of a
predicate to half the elements, and the applicability of its negation for the
other half (randomly selected as odd and even quantiles). Three comparison
classes were paired with bare (positive form) adjectives and four featured
adjectives modified by ‘very’, ‘extremely’, ‘absolutely’, and ‘quite’. Each of
these constructions could appear in affirmative of negated form. The last
comparison class appeared with ‘a bit’ in affirmative sentences and ‘at all’
in negative sentences. The 8 comparison classes were broken down into
16 blocks of 10 trials (affirmative and negative forms separated to avoid
confusion). The blocks were presented in random order, and items within
each block were also randomized. The association between scales, adjectives,
and constructions was randomized and balanced.
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Distribution 𝑝0 𝑝1 𝑎 𝑏 Support

Unbound 1 0 0 [4, 40] (0, 1)
Unbound 2 0 0 [3, 15]

Lower-bound 1 [0.1, 0.7] 0 [0.7, 1] [1, 6] [0, 1)
Lower-bound 2 [0.2, 0.65] 0 [1, 2.5] [1, 8]
Upper-bound 1 0 [0.1, 0.7] [1, 6] [0.7, 1] (0, 1]
Upper-bound 2 0 [0.2, 0.65] [1, 8] [1, 2.5]
Double-bound 1 [0.1, 0.35] [0.7, 1] [0, 1]
Double-bound 2 [0.1, 0.25] [1, 3.5]

Table 1 Parameter ranges of the inflated beta distributions used to generate com-
parison classes. 𝑝0 and 𝑝1 are the discrete probability mass at 0 and 1 respectively.
𝑎 and 𝑏 parametrize the beta distribution. The last column indicates the support of
the distributions (which align with their name).

Bare form Noun Comparative Superlative

roagly roagliness roaglier roagliest
vibble vibbleness vibbler vibblest
drok drokth drokker drokkest
scrop scropth scropper scroppest
plard plardity plarder plardest
hif hifth hiffer hiffest

tepable tepability more tepable most tepable
plawic plawicity more plawic most plawic

Table 2 Nonce adjectives used in the experiment, together with the derived noun
for the measurement. The comparative and superlative forms were only used in
examples and training items. We varied the morphology across the 8 adjectives, as
some suffixes may be biased towards specific categories. However, as discussed in
the results section, we did not observe any difference between the 8 adjectives.
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2.2 Participants
We recruited 222 participants on MTurk, paid $2 each (the survey took about
10min). We removed participants whose median RT was below 1s, or who
had more than 50% duplicated responses (i.e., didn’t move the slider between
subsequent trials). We fitted linear regressions of acceptability by degree
(flipped for negative sentences) and removed blocks where the regression
coefficients was more than 1SD below the mean (threshold: −.36), as well as
participants who fell below the threshold on at least half of the blocks. The
goal was to remove cases where participants missed a change of polarity
between two blocks, which happened on 7% of affirmative blocks and 14%
of negative blocks. In all, we filtered out 20% of the initial data set.

3 Results
The full data set and analysis scripts are available at https://github.com/Alex-
Cremers/nonce-gradable-adj. We first tested how negation affected the re-
sults by fitting sigmoid functions with optional censoring at scale ends to
each block, and compared the midpoints and steepness for pairs of affir-
mative and negative blocks (excluding the ‘a bit/at all’ cases). We found
no significant differences (midpoint: 𝑡(404) = −0.10, 𝑝 = 0.92; steepness:
𝑡(456) = −0.85, 𝑝 = 0.40), confirming that negation does not shift the thresh-
old for the adjective but only flips acceptability, in line with previous em-
pirical findings (Hersh & Caramazza 1976; Leffel et al. 2019). In the rest of
the analyses, we pool data from affirmative and negative blocks under the
assumption that Acc(¬𝑆) = 1 − Acc(𝑆). From now on, we focus on the bare
adjectives only.

In order to diagnose absolute interpretations, we computed the slope of
acceptability as a function of degree at both ends of each scale. Min. std.
adjectives would have a sudden increase in acceptability at the bottom of
the scale, since the threshold should most likely be located right above the
minimum degree. For max. std. adjectives, we expect a steep increase at the
top of the scale, as the threshold should sit right below the maximum of
the scale. By contrast, relative adjectives should be flat at both extremities
of their degree distribution, since their vague threshold should be situated
slightly above the middle of the scale (their acceptability should form a
sigmoid). The slopes were computed using linear regressions on the first
and last 3 degrees on each scale. Figure 3 displays the measured slopes.

https://github.com/Alex-Cremers/nonce-gradable-adj
https://github.com/Alex-Cremers/nonce-gradable-adj
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(a) Acceptability by raw degree.
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(b) Acceptability by degree normalized to
map the highest degree in each comparison
class to 1 and the lowest to 0.
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(c) Acceptability by rank of the item in the
comparison class, normalized to [0,1].

Figure 2 Acceptability of the bare adjec-
tives as a function of various possible
predictors. Figure (a) illustrates the cate-
gorical difference between the different
types of comparison classes. Figure (b)
shows that normalizing degrees by the
range of the comparison class explains
most of the differences. By contrast, Fig-
ure (c) shows that rank in the compar-
ison class alone cannot explain partici-
pants’ judgments.

For statistical analysis, we applied an inverse hyperbolic sine (IHS) trans-
form on slopes, which gives good results on right-skewed data with negative
values (Burbidge & Magee & Robb 1988). We ran two mixed-effects regres-
sions on these IHS-transformed slopes—one for slopes at the bottom of the
comparison class and one for slopes at the top—with Distribution type as a
predictor (treatment-coded with Unbound as the reference level) and random
by-subject intercepts. The detailed results, in Table 3, confirm the differences
which are visible in the graph: acceptability ratings vary significantly more
dramatically near closed boundaries than open boundaries.

At this point, it is still unclear what drives the difference between the
distributions, and whether participants are sensitive to fine-grained distri-
butional differences within each type of comparison class. As a post-hoc
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analysis, we tested the effect of 𝑝0 (the probability mass at 0) on bottom
slopes and 𝑝1 on top slopes by adding them as predictor to the mixed-
effects models described above. We found no effect of 𝑝0 for bottom slopes
(𝛽 = .098, 𝜒2(1) = 1.4, 𝑝 = .24) and a small but negative effect of 𝑝1 for top
slopes (𝛽 = −.18, 𝜒2(1) = 5.4, 𝑝 = .02). This suggests that the presence of
items from the comparison class at a scale boundary can shift the threshold
to this boundary, but how many items are at the boundary does not actually
matter, even though we varied this number dramatically, from 2 to 14.

Finally, one may wonder whether the eight nonce adjectives differed with
respect to our measure. We tried to vary the morphology among them, and
it is possible that some suffixes were biased towards a specific category of
gradable adjectives. To test this possibility, we updated the mixed models
with a fixed categorical factor of adjective. This didn’t improve the fit on
either top (𝜒2(7) = 4.54, 𝑝 = 0.72) or bottom (𝜒2(7) = 4.49, 𝑝 = 0.72) slopes,
suggesting that there is no significant differences between the 8 adjectives.

Distribution 𝛽 𝑡 𝑝

Bo
tt
om

(unbound) 0.44 5.7 < .001
double-bound 0.27 2.6 .011
lower-bound 0.31 2.9 .004
upper-bound −0.03 −0.3 .77

To
p

(unbound) 0.30 4.6 < .001
double-bound 0.34 3.8 < .001
lower-bound 0.08 0.9 .37
upper-bound 0.35 3.9 < .001

Table 3 Results of the mixed-effects model on IHS-transformed slopes. Unbound is
the reference level (intercept), other parameters correspond to the difference. The
Double-bound distributions have higher slopes than Unbound at both ends. The
Lower-bound distributions have a steeper slope at the bottom of the scale, but not
at the top. The Upper-bound distributions exhibits the opposite pattern.

4 Modeling
Our results confirm that participants are sensitive to the distribution of
degrees in the comparison class, and further demonstrate that their response
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Figure 3 Slope computed on the three highest degrees as a function of slope on the
three lowest degrees, by distribution type (mean and standard deviation).

patterns roughly fall into the usual categories of relative, min. std. and max.
std. adjectives. However, the effect seems to come almost exclusively from
the range of degrees in the comparison class, and whether this range reaches
0 or 1. This would suggest—against usual assumptions in the Bayesian
pragmatic literature—that participants’ behavior is not in fact sensitive to
subtle distributional effects, andmay be better described by a simple heuristic.
Bayesian pragmatics is not out of the race yet however. For instance, the
Speaker-Oriented Model (SOM) of Q&F allegedly switches to a minimum
standard interpretation when the probability mass near the lower boundary
reaches a tipping point. It would thus behave more categorically than the
RSA model of L&G.

We now present quantitative models that have been proposed to capture
effects of comparison class on adjectives and which we will test against
our data. The first model is a very simple heuristic sensitive to the range of
degrees only, while the second is a more complex one based on similarity-
based clustering. We then present two implementations each of L&G’s RSA
model and Q&F’s evolutionary SOM.

4.1 The RH-R model
Schmidt et al. (2009) tested 9 different descriptive models of gradable adjec-
tives, which exploit various statistical properties of a discrete comparison
class to predict the interpretation of an adjective. Of these 9, we will only
consider the best two models. The first one, “Relative height by Range”
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(RH-R), is a very simple model which assumes that the adjective is true of a
fixed proportion of the degree range, with Gaussian noise around the degree
that realizes this proportion. We allowed both parameters of the model
(the proportion of degrees which validate the adjective and the fuzziness
parameter) to vary independently by participant in a hierarchical model. For
comparison with the Bayesian pragmatic models, we fitted the proportion of
items for which the adjective is true as one minus the inverse logit of a “cost”
parameter which was normally distributed among participants. The partici-
pants’ fuzzyness parameters were sampled from a log-normal distribution.
Each participant was also assigned a noise parameter (describing the error
between the model predictions and the data), which was also log-normally
distributed. For this model and all following models except CLUS, we also
included a Gaussian random effect of nonce-adjective on cost.

4.2 The CLUS model
A second model proposed by Schmidt et al. (2009), CLUS, performed about
as well as the RH-R on their data. It is a more sophisticated model based
on a probabilistic clustering, and is therefore a good representative of what
McNally (2011) assumes for relative adjectives. In detail, a Dirichlet process
builds a probabilistic partition of the items in the comparison class, assuming
that the degrees of items within the same cell follow the same normal
distribution. In this model, the probability that an item counts as “tall”
is the probability that it belongs to the same partition cell as the tallest
item in the comparison class, conditional on the tallest and shortest items
belonging to separate cells. Our detailed implementation of the model is
given in Appendix A. The model has several free parameters governing
the priors of the parameters of the Gaussian distribution for each cluster,
and an 𝛼 parameter tuning the model’s bias towards few large clusters or
many smaller clusters. A hierarchical fit was attempted, but turned out to
be computationally too difficult. In the end, we fitted only the 𝛼 parameter.

4.3 Lassiter and Goodman’s RSA model
L&G build on the standard Rational Speech-Act model, where speakers are
assumed to maximize the trade-off between informativity and cost for each
utterance, but they assume that listeners also reason about which possible
threshold 𝜃 could have led a speaker to use a gradable adjective. The literal
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listener 𝐿0, parametrized by 𝜃, is defined as:

(2) 𝐿0(𝑑|adj, 𝜃) ∝ 𝜑(𝑑)JadjK𝜃(𝑑) where 𝜑 is the prior on degrees

We adopt a non-strict semantics for gradable adjectives, except when 𝜃 = 0.
This means that 𝜃 = 0 corresponds to a strict min. std. interpretation, and
𝜃 = 1 to a strict max. std. interpretation:

(3) JadjK𝜃,𝑑 = 1 iff (𝑑 ≥ 𝜃 > 0 or 𝑑 > 𝜃 = 0)

As usual in RSA, the utility function 𝑈1 represents a trade-off between
informativity and cost, here parametrized by 𝜃. We only consider two mes-
sages (the bare positive-form adjective and the null message) so the function
describing the pragmatic speaker 𝑆1 remains very simple:

(4) 𝑈1(𝑢|𝑑, 𝜃) = log 𝐿0(𝑑|𝑢, 𝜃) − 𝑐𝑜𝑠𝑡(𝑢)

(5) 𝑆1(adj|𝑑, 𝜃) = |
1

1 + e𝜆[logΦ
𝑐∗(𝜃)+𝑐adj]

if JadjK𝜃(𝑑) = 1

0 otherwise

WhereΦ𝑐∗(𝜃) is the probability that JadjK𝜃(𝑑) is 1 given a fixed 𝜃 and the prior
distribution 𝜑 on 𝑑 (i.e., the complementary cumulative distribution function
of 𝑑, modulo the strict/non-strict adjustment). Note that, as a function of 𝑑,
𝑆1 is simply a step function.

The pragmatic listener infers both 𝑑 and 𝜃, using a prior 𝑃(𝜃) on the
threshold:

(6) 𝐿1(𝑑, 𝜃 |adj) ∝ 𝜑(𝑑)𝑃(𝜃)𝑆1(adj|𝑑, 𝜃)

In order to make predictions regarding the acceptability of the adjective, we
need to compute the posterior cumulative distribution function of 𝜃 (Lassiter
& Goodman 2015: Eq. 32). We first marginalize over 𝑑:1

1The move from the first line to the second is valid because 𝑆1 = 0 for 𝑑 < 𝜃. The move
to the third line is possible because 𝑆1 is constant for 𝑑 ≥ 𝜃 and can therefore be factored
out of the sum.
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(7) 𝐿1(𝜃|adj) ∝ ∑
𝑑
𝜑(𝑑)𝑃(𝜃)𝑆1(adj|𝑑, 𝜃)

∝ ∑
𝑑≥𝜃

𝜑(𝑑)𝑃(𝜃)𝑆1(adj|𝑑, 𝜃)

∝ (∑
𝑑≥𝜃

𝜑(𝑑)) 𝑃(𝜃)𝑆1(adj|𝑑 ≥ 𝜃, 𝜃)

∝
Φ𝑐∗(𝜃)𝑃(𝜃)

1 + e𝜆[logΦ
𝑐∗(𝜃)+𝑐adj]

We can then derive the predicted acceptability. The normalizing constant is
simply the integral up to the highest degree in the comparison class:

(8) Acc(adj|𝑑𝑖) ∝ ∫
𝑑𝑖

0

Φ𝑐∗(𝜃)𝑃(𝜃)

1 + e𝜆[logΦ
𝑐∗(𝜃)+𝑐adj]

d𝜃

We tested two priors on 𝜃: a continuous uniform prior on [0,1], and
recycling the discrete degree prior. The first option is what L&G proposed;
the second corresponds to sampling the threshold from the comparison class.
In the rest of the paper, we name these two models RSA-U and RSA-I (for
Uniform and Informed priors, respectively).

An interesting property of the RSA model is that it cannot ever predict
less than 100% acceptability on the maximal element in a comparison class.
Indeed, the acceptability is meant to track posterior probability of 𝜃 after
hearing an utterance of the adjective in its positive form. Since the adjective
must be true of some degree to have been uttered truthfully, 𝜃 cannot exceed
the highest degree in the comparison class. By contrast, the model does not
necessarily prevent the adjective from receiving a tautologous interpretation,
which would make even the lowest degree acceptable. The possible values for
𝜃 are further restricted by the prior however (in particular, our priors do not
allow 𝜃 < 0, so a degree of 0 is always unacceptable in our implementation).

The participants’ rationality parameters followed a log-normal distri-
bution while the costs followed a normal distribution. As with the RH-R
model, participants were also assigned a noise parameter from a log-normal
distribution.
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4.4 Qing and Franke’s SOM
The SOM proposed in Q&F is superficially similar to the RSA, in that it
also works around a trade-off between communication success and cost.
Conceptually, it is very different however: the threshold is assumed to be
a convention among a community of language users, and the trade-off is
optimized in the long term rather than for an isolated utterance.

Formally, the model assumes that there is a convention on a probabilistic
distribution for 𝜃, Pr(𝜃), and that this distribution is an approximation of
the threshold which would optimize a trade-off between expected success
(the probability that communication is successful) and expected cost (which
increases with the frequency of use of the adjective). For a discrete prior,
the two components are defined as follow:

(9) Expected success:

𝐸𝑆(𝜃) = ∑
𝑢1(𝑑)=0

𝜑(𝑑)𝜑(𝑑|𝑢0, 𝜃) + ∑
𝑢1(𝑑)=1

𝜑(𝑑)𝜑(𝑑|𝑢1, 𝜃)

= ∑
𝑑<𝜃

𝜑(𝑑)2 +∑
𝑑≥𝜃

𝜑(𝑑)2

𝑃(𝑑 ≥ 𝜃)

= ∑𝜑2 +
𝑃(𝑑 < 𝜃)
𝑃(𝑑 ≥ 𝜃)

∑
𝑑≥𝜃

𝜑(𝑑)2

To understand the definition of expected success, one first needs to consider
that there is a 𝜑(𝑑) probability that a speaker may want to communicate the
degree 𝑑. If 𝑑 is below the threshold, the speaker cannot use the adjective,
and so the listener also has a probability 𝜑(𝑑) to guess the correct degree
(hence the 𝜑(𝑑)2). If 𝑑 is above 𝜃, the speaker can and will use the adjective,
so the listener can conditionalize on the information that 𝑑 ≥ 𝜃, therefore
they will guess 𝑑 with probability 𝜑(𝑑)

𝑃(𝑑≥𝜃) .
The expected cost is simply the cost of the adjective multiplied by the

probability that the adjective will be used given 𝜃:

(10) Expected cost:
𝐸𝐶(𝜃) = 𝑐adj × 𝑃(𝑑 ≥ 𝜃)

The utility of a fixed threshold 𝜃 is then defined as the difference between
expected success and expected cost, and the conventional distribution of 𝜃
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is assumed to be a softmax over possible thresholds:

(11) Pr(𝜃) ∝ exp(𝜆[𝐸𝑆(𝜃) − 𝐸𝐶(𝜃)])
∝ exp (𝜆 [𝑃(𝑑<𝜃)𝑃(𝑑≥𝜃) ∑𝑑≥𝜃 𝜑(𝑑)2 − 𝑐adj𝑃(𝑑 ≥ 𝜃)])

In this case, the softmax is not meant to encode sub-rationality (as we’re talk-
ing about optimization at the level of a whole community), but to represent
various sources of noise (in particular uncertainty on the prior distribution)
which lead to vagueness.

Unlike the RSA, the SOM does not impose any restriction on 𝜃, and in
particular does not exclude thresholds outside the comparison class (which
would make the adjective trivially true or false). For comparison with the
RSA model, we assume that 𝜃 can fall under the smallest degree if it is
positive, but cannot exceed the highest degree in the comparison class (i.e.,
the adjective can be trivial, but it cannot be contradictory). The second
difference is that the SOM is not sensitive to the actual degrees, only to the
probability distribution over them. This means that if the comparison class
comprises of 𝑛 degrees, there are at most 𝑛 + 1 thresholds to consider (in
practice, we’ll only consider 𝑛 or 𝑛 − 1, given the previous point).2

The model uses the same parameters as the RSA, so we adopted the same
distributions. However, due to difficulty fitting the model, we adopted more
restrictive priors on the variance of the random effects.

4.5 An update on the SOM
The notion of expected success in the SOM is only properly defined for
discrete priors3 and has some problematic mathematical properties. For
instance, given a discrete comparison class where elements are equiproba-
ble, the model always predicts the maximum-standard interpretation to be

2Things would be different if we considered all possible values of 𝜃 in [0,1] and decided
to integrate exp 𝜆𝑈 (𝜃) (see fn. 5), but this would require picking a prior on 𝜃, which goes
contrary to the spirit of the SOM.

3Q&F propose a continuous generalization with ∫ 𝜑2 where 𝜑 is the density of a continu-
ous prior, but with some continuous priors, this integral is not finite, so the distribution of 𝜃
is not defined. Even when finite, this quantity is not scale independent, while the expected
cost is. As a result, the model predictions depend on the unit of measurement (i.e., the
prediction for ‘tall’ are qualitatively different if heights are measured in cm or in).
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optimal, unless the cost of the adjective is negative.4

For these reasons, we propose an update to the SOM to give it a better-
behaved expression by replacing the problematic notion of expected success
with expected informativity (in line with the RSA). We refer to this model
as “SOM-EI” in what follows.

(12) Expected informativity:

𝐸𝐼 (𝜃) = ∑
𝑢1(𝑑)=0

𝜑(𝑑) log 𝜑(𝑑|𝑢0, 𝜃) + ∑
𝑢1(𝑑)=1

𝜑(𝑑) log 𝜑(𝑑|𝑢1, 𝜃)

= ∑
𝑑<𝜃

𝜑(𝑑) log 𝜑(𝑑) +∑
𝑑≥𝜃

𝜑(𝑑) [log 𝜑(𝑑) − log(1 − Φ(𝜃))]

= ∑𝜑 log 𝜑 − 𝑃(𝑑 ≥ 𝜃) log 𝑃(𝑑 ≥ 𝜃)
= −𝐻(𝜑) − 𝑃(𝑑 ≥ 𝜃) log 𝑃(𝑑 ≥ 𝜃)

Where𝐻(𝜑) is the entropy of the prior. This notion of expected informativity
can be generalized to the continuous case using the notion of differential
entropy (ℎ(𝑋) = 𝐸[log𝑋]). While differential entropy is not scale indepen-
dent, it only appears as an additive constant in the utility function 𝑈 (𝜃), and
therefore does not affect the predictions of the model:

(13) 𝑈 (𝜃) = −ℎ(𝜑) − 𝑃(𝑑 ≥ 𝜃) [log 𝑃(𝑑 ≥ 𝜃) + 𝑐adj]

As this expressions makes clear, this version of the SOM is only sensitive
to the proportion of elements in the comparison class that end up below or
above the threshold. For instance, with 𝑐adj = 0, the optimal 𝜃 is the value
that makes the adjective applicable to e−1 ≈ 37% of the elements. In this
regard, this model is similar to the PN “Percent Number” model of Schmidt
et al. (2009), which also focuses on the proportion of items counting as “tall”.
The two models differ on the shape of the distribution around this mode
however, since the PN is always Gaussian while the SOM can take more
exotic forms and may have a different mean.5

The parametrization of the SOM-EI was identical to that of the SOM.

4Proof: if there are 𝑁 items in the comparison class, of which 𝑘 are at or above 𝜃, utility
reduces to 1

𝑁
+ 𝑁−𝑘

𝑁 2 − 𝑘
𝑁
𝑐adj. Assuming that 𝑐adj is positive or null, this is a strictly decreasing

function of 𝑘, which means that 𝜃 should be as high as possible.
5Looking at equation (8), one might think that this is also true of the RSA-U, since the

comparison class only shows up through the function Φ𝑐∗, which encodes the probability
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4.6 Methods and Results
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Figure 4 Model predictions against data for each of the models, with shade indi-
cating the concentration of points in a given hex cell. The predictions of the best
models fall along the diagonal since they tightly follow the data. The colored lines
indicate the shape of predictions for each type of scale.

The models were fitted using Stan (Carpenter et al. 2017) on all data from
bare adjectives. Participants’ responses on sliders were assumed to follow a
Gaussian censored at 0 and 1 (as in a tobit regression, Tobin 1958). Figure 4
presents each models predictions against the data.

We evaluated and compared the models through leave-one-out cross-
validation (LOO-CV), using the PSIS technique from Vehtari & Gelman &
Gabry (2017), as implemented in the package loo in R. LOO-CV consists
in repeatedly removing one data point and refitting the model to generate
predictions for the missing data point in order to evaluate the accuracy of
a model’s predictions. For complex models with a lot of data, this quickly

that the adjective is true (i.e. the proportion of the comparison class which falls above the
threshold). Counterintuitively however, the distribution of degrees creeps back through
the continuous prior on 𝜃: because we need to integrate this continuous prior, the distance
between the different degrees in the comparison class becomes relevant, and not just the
proportion of items which falls below or above 𝜃.
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becomes impractical. The idea behind PSIS is to approximate the result of
LOO-CV from the individual terms of the log-likelihood without having to
refit the model for each data point. We treated each pair of participant and
comparison class as a single data point for the cross-validation.

As the detailed results in Table 4 indicate, the RH-R, CLUS and RSA-U
models best fitted the data (without significant difference between them-
selves). Surprisingly, sampling the threshold from the comparison class in
the RSA-I model, leads to the worst predictions, in stark contrast with the
RSA-U. The two versions of the SOM did not differ significantly, but were
both much lower than the RSA-U.

Model elpdloo Δelpd 𝑆𝐸Δelpd 𝑝𝑙𝑜𝑜 𝑆𝐸𝑝
RH-R −1701 0 0 1287 44.2
CLUS −1737 −35.8 160.8 1272 56.3
RSA-U −1805 −103.5 178.0 1184 44.9
SOM-EI −2612 −910.7 159.0 1011 45.6
SOM −2696 −995.4 155.8 1267 70.8
RSA-I −3774 −2073.3 161.4 1209 63.2

Table 4 Comparison of the different models using PSIS LOO-CV (Vehtari & Gelman
& Gabry 2017). The first column indicates the expected log pointwise predictive
density, which measures how well the model can generalize to unseen data. The
next two columns, Δ𝑒𝑙𝑝𝑑 and 𝑆𝐸Δelpd, indicate the difference in elpd with the best
model (RH-R in this case) and the estimated error on this difference. 𝑝𝑙𝑜𝑜 is the
estimated effective number of parameters and 𝑆𝐸𝑝 the estimated error on this
number.

We now turn to the posterior parameter estimates for each model, which
are listed in Table 5. We first note that the RSA-U gives very reasonable
parameters, with a median rationality of 2.4 and a mean cost of 1.6. In line
with the results on top- and bottom-slopes which showed no differences
between the nonce adjectives, the RSA-U also assigns the lowest variance of
all models to by-adjective random effects.

By contrast, the SOM and SOM-EI require very negative costs of −2.8 and
−4.9 respectively. As discussed above, the SOM is strongly biased towards
maximum standard interpretations, and this bias can only be overcome by
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a negative cost or a large probability mass at the bottom of the scale. The
SOM-EI does not usually place the mode of the distribution at the top of the
scale, but it still puts more probability mass on high values, and no matter
the distribution, it cannot predict the adjective to apply to more than 37% of
the comparison class without a negative cost. To compensate for these large
costs, the two models must assign very low rationality to the participants,
with median 0.28 and 0.14 respectively.

5 Discussion
First of all, our results confirm the long-established effect of comparison
class on the interpretation of gradable adjectives (Syrett et al. 2004; Schmidt
et al. 2009; Syrett & Kennedy & Lidz 2010; Solt & Gotzner 2012; Qing &
Franke 2014b; Xiang et al. 2022). They further establish that the distribution
of degrees in the comparison class not only affects the interpretation of
gradable adjectives, but is sufficient to see categorical contrasts reminiscent
of the absolute/relative distinction emerge even in the absence of any world-
knowledge or lexical information. On the face of it, one could think that
this is enough to discard approaches which ground the absolute/relative dis-
tinction in lexical semantics (Kennedy 2007) or properties of the real-world
scales denoted by the adjective (McNally 2011), but some limitations of the
empirical design prevent us from drawing such a strong conclusion. Most
importantly, all test sentences included a ‘for’-phrase (e.g., “for a class B
planet”), which has been argued to be incompatible with absolute adjectives
(Siegel 1976: p155). This has led accounts which argue that absolute inter-
pretations require more than a very biased comparison class (rule-based
categorization for McNally 2011, a specific morpheme for Qing 2021) to
assume that ‘for’-phrases are incompatible with the source of absolute inter-
pretations, and thus force a relative interpretation. McNally would further
argue that information about the underlying real-world dimension is neces-
sary to derive an absolute interpretations, as these are rule-based rather than
similarity-based. Because our design intentionally stripped all pre-existing
world-knowledge, it would prevent absolute interpretations. Participants
may nevertheless be able to postulate simple rules by treating the 0 and
100% degrees as categorically different from the rest of the scale when some
items reach them. This could in fact explain why we see categorical effects
of distribution type but no dependency on the actual probability mass at
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scale ends. Note in passing that Qing’s account of minimum-standard as
zero-standard for the adjective ‘profitable’ may simply fall under McNally’s
account as a particular case of rule-based categorization.

Another potential limitation of the experiment concerns the use of per-
centages. The goal of the experiment was to make clear that all scales were
closed on both sides, so that the comparison classes only varied in which part
of these closed scales they populated. Percentages do not necessarily impose
closed scales however. They can be used with dimensions we know to be
associated with adjectives that encode open scales, as in (14) (Chris Kennedy,
p.c.). Some scales also use percentages but can exceed 100%, as in (15), or
even negative percentages (e.g., in a deflation situation). Conversely, a scale
expressed in percentages may not actually reach its boundary, making it an
open scale. For instance, the brightness of stars is defined in reference to
the brightness of Vega.6 A star can be arbitrarily faint, but it cannot reach
0% of the brightness of Vega, since all stars emit light.

(14) An optimum length is 50 percent of the length of the core

(15) In November 1923, inflation in Germany reached 29,525%

That being said, interpreting percentages as comparison with a reference,
without the reference mentioned, does not seem very likely out of the
blue, and the use fixed rectangles filled to various degrees in the images
shown to participants reinforced the idea that the percentages were bound
to 0–100%. The last point remains however: for comparison classes where
no item reached 0% and/or 100%, it was entirely possible for participants
to assume that these extreme values are physically impossible on the scale
described by the nonce words. Note that for the results to remain compatible
with a strict interpretation of Interpretive Economy, this would have to
be the default assumption, otherwise we would have observed absolute
interpretations for unbound comparison classes. On the other hand, if we
accept that participants interpreted all nonce adjectives as denoting the same
closed scale, our results would definitively establish that a closed scale can
still give rise to a relative interpretation when the comparison class stays
away from the boundaries. This would immediately capture the observation

6In practice, astronomers use the log of this ratio, but percentages are sometimes given
for visible stars.
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that ‘expensive/cheap’ are relative despite having a scale that includes 0.
Next, we must address the occasional ambiguity observed for lexicalized

closed-scale adjectives between a min. std. and a max. std. interpretation.
Kennedy (2007) cites in particular the case of ‘transparent’ which can alterna-
tively mean “fully transparent” or “not fully opaque”. While these adjectives
tend to favor a max. std. interpretation (see ‘full, closed’), McNally (2011)
cites ‘familiar’ as a counter-example, which can receive a relative interpre-
tation despite the availability of a “completely familiar” interpretation (see
also debates around ‘likely’ in Lassiter 2011; Klecha 2012). Such examples
would be prime targets for Bayesian pragmatic accounts: the variability may
indicate sensitivity to a prior distribution which sometimes places more
mass towards the top of the scale, sometimes towards the bottom. There is
however good evidence against this probabilistic explanation in our data: for
Double-bound distributions, not only did we not observe the usual max. std.
interpretation that closed-scales adjectives such as ‘full’ typically receive, but
we didn’t see any negative correlation between the top and bottom slopes
(linear regression on IHS-transformed slopes: 𝛽 = 0.070, 𝑡 = 0.94, 𝑝 = .35).
If participants were split between min. std. and max. std. interpretations, we
would expect such a correlation (they would place the threshold at one or
another end of the scale). Instead, they all seem to assign a somewhat linear
acceptability curve to the Double-bound cases. This would correspond to
a uniform distribution for 𝜃, as if they decided to remain fully agnostic on
where the threshold might fall. This result suggests that when both scale
ends are available, the distribution of degrees in the comparison class is
not immediately relevant, and an external source is needed to disambiguate
between relative, min. and max. std. interpretations. This could come from
pure lexical idiosyncrasy, or—as McNally (2011) suggested—background
knowledge about the physical dimension denoted by the adjective, which
happens to be lacking here.

Given these potential caveats, in particular the point about for-phrases,
our experiment likely did not reveal any genuine absolute interpretation,
but only “absolute-like” relative interpretations. Remarkably, an important
point of Q&F in favor of the SOM and against the RSA model was that
the RSA failed to derive true absolute interpretations from extreme priors.
Ironically, this inability to derive the true relative/absolute distinction from
priors alone may be a strength of the model if these interpretations actually
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require more than probability mass near scale end. The SOM, on the other
hand, is biased towards absolute interpretations—in particular maximum
standard ones—, and may fare poorly on our dataset precisely because such
extreme interpretations simply don’t arise from priors alone. By contrast,
the SOM outperforms the RSA in Xiang et al. (2022), who tested real English
adjectives.7 In short, the initial project of the probabilistic approach—to
derive the absolute/relative distinction from distributional properties of the
comparison class instead of stipulating it lexically—may have been doomed
from the start because as soon as a comparison class is involved, we are
dealing with a relative interpretation.

Our modeling results, together with those of Xiang et al. (2022), suggest
that the RSA is a good model of relative interpretations, including “absolute-
like” relative interpretations when the comparison class is concentrated at
a scale end, but needs to be complemented with something else in order
to capture actual absolute adjectives. We see two ways this could be done.
The first is to accept Qing (2021)’s proposal that absolute interpretations
involve a morpheme distinct from Kennedy and McNally’s pos. We could
even generalize this to include all rule-based interpretations, following
McNally (2011). The second option would be to encode lexical knowledge in
the 𝜃-prior of the RSA. Indeed, the usual implementation of the RSA—the
RSA-U which performed so well on our data—assumes a uniform prior on 𝜃.
This implies that the listener has no expectations whatsoever regarding
the threshold before hearing a specific use of the adjective. Q&F already
pointed out that this seems implausible. In practice, especially for frequent
adjectives, the listener likely has quite specific expectations regarding where
the threshold will fall. This effect would be particularly marked for absolute
adjectives, since one can build more stable expectations regarding their
threshold. It could even explain the idiosyncrasy of double-closed scale
adjectives: over time, the prior on 𝜃 would concentrate on the side of the
scale where comparison classes are most often concentrated, which can vary
arbitrarily from one adjective to the next.

To conclude, we would like to come back to the debate between heuristics
and explicit rational reasoning when it comes to computing the threshold

7It still struggled with min. std. adjectives though (presumably because of its bias
towards max. std. interpretations).
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of an adjective. We showed that the RSA and heuristics such as the RH-R
and CLUS models were approximately equal when it comes to capturing
participants’ behavior in our experiment. However, our implementation
of the RSA and modeling choices do not make it a great model of rational
behavior either. First of all, affirmative and negative sentences clearly mirror
each other in terms of acceptability, but in a model like the RSA, the negative
sentence should be more costly, and therefore more informative. In other
words, its threshold should be much lower. We avoided this problematic
prediction of the model, and directly applied its prediction for an affirmative
sentence to its negation by simply flipping the acceptability in [0, 1]. Second,
the predictions for the affirmative sentence were computed based on only
two messages: the bare form of the adjective and the null message. This
ignores a lot of other messages a speaker might want to use to convey a
given degree. In short, our implementation of the RSA makes it look more
like an encapsulated heuristic than actual rational pragmatic reasoning. This
actually seems like a better option when it comes to the computation of
gradable adjectives thresholds, which doesn’t seem to involve a lot of effort
or conscious reasoning, appears to take place locally (e.g., within the scope
of negation), and is acquired very early (Syrett & Kennedy & Lidz 2010),
especially in comparison with implicatures. The relatively simple formula
derived from the RSA-U model would only be a frozen heuristic, and the
fact that it can be derived from a pragmatic model (reduced to its simplest
form) could be a mere coincidence, or—more plausibly—would indicate that
this heuristic mimics rational reasoning in bare positive uses of the adjec-
tive. As discussed in the introduction, there are two conceivable kinds of
heuristics: the first would be the result of non-linguistic cognitive faculties
clustering stimuli into categories which gradable adjectives can pick up.
Such heuristics of non-linguistic origin would likely rely on categorizations
useful for general cognition rather than specifically optimized for language
use, and may not even be human-specific. The second kind would result
from evolutionary processes shaping an optimal language (in terms of in-
formativity, cost, learnability…), and would be specifically optimized for
linguistic purposes.

Finally, the reliance on heuristics for the determination of the threshold
would not mean, of course, that gradable adjectives cannot be involved in
complex pragmatic reasoning. Leffel et al. (2019) present a puzzling example
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of interaction between vagueness and implicatures, and Cremers (2022)
proposes an RSA model which explains this puzzle, but assumes that the
distribution of the threshold has already been computed before genuine
pragmatic reasoning can take place.
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Model Parameter Mean CIlow CIhigh

RH-R

mean_cost −0.46 −0.59 −0.31
sigma_cost_adj 0.11 0.05 0.20
sigma_cost_subj 0.71 0.61 0.81
mean_log_eps −0.70 −0.86 −0.56
sigma_eps_subj 1.11 0.96 1.26

CLUS alpha 1.18 1.17 1.20

RSA-U

mean_cost 1.63 1.27 2.00
sigma_cost_adj 0.07 0.02 0.14
sigma_cost_subj 1.79 1.42 2.18
mean_log_lambda 0.87 0.74 0.99
sigma_lambda_subj 0.68 0.57 0.80

RSA-I

mean_cost −0.02 −3.37 3.15
sigma_cost_adj 4.69 3.28 6.19
sigma_cost_subj 12.53 9.92 15.27
mean_log_lambda 0.10 0.00 0.20
sigma_lambda_subj 0.37 0.29 0.46

SOM

mean_cost −2.79 −4.47 −1.23
sigma_cost_adj 1.74 0.86 2.89
sigma_cost_subj 3.17 1.88 4.58
mean_log_lambda −1.29 −1.76 −0.82
sigma_lambda_subj 2.03 1.69 2.38

SOM-EI

mean_cost −4.91 −7.21 −2.73
sigma_cost_adj 2.89 1.73 4.09
sigma_cost_subj 6.10 4.52 7.70
mean_log_lambda −2.00 −2.37 −1.63
sigma_lambda_subj 1.96 1.63 2.29

Table 5 Posterior parameters of the Stan models (mean posterior and 95% HDI
confidence interval). The “mean_” parameters corresponds to fixed effects, the
“sigma_” parameters correspond to the sd of random effects around these mean
values (by subject or by adjective).
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A Implementation of the CLUS model
The CLUS model assumes that the degrees of items in the comparison class
were generated by an unknown number of normal distributions, and draws
inferences about which items are likely to have their degrees likely coming
from the same distribution. In practice, since the degrees in my experiment
are bound to [0, 1], I assume that the arcsine transformed degrees (Sokal &
Rohlf 1969) follow an infinite Gaussian mixture.

For the details about the Dirichlet Process and the original implemen-
tation of the CLUS, see Schmidt (2009). My implementation follows the
stick-breaking interpretation of the Dirichlet process, as described in Lui
(2021). In practice, I set a cap at 10 clusters (exploration showed that the
weights drop below 1% from the 7th cluster already).

Given𝑄 themaximumnumber of clusters and 𝑑1, … 𝑑𝐾 the arcsine-transformed
degrees in a given comparison, we can write the model:

𝛼 ∼ Gamma(2, 4)
𝑣𝑞|𝛼 ∼ Beta(1, 𝛼)
𝑤1 = 𝑣1 𝑤 are the weights for the clusters

𝑤𝑞 = 𝑣𝑞
𝑞−1
∏
𝑟=1

(1 − 𝑣𝑟) (1 < 𝑞 < 𝑄)

𝑤𝑄 =
𝑄−1
∏
𝑟=1

(1 − 𝑣𝑟)

𝑧|𝑤 ∼ Categorical𝑄(𝑤) indicative vector of length K
𝜇 ∼ 𝒩 (𝜋4 , 0.5) vector of means of Gaussians (length 𝑄)
𝜎 ∼ Gamma(1.5, 4) vector of sd of Gaussians (length 𝑄)

𝑑𝑘|𝑧𝑘, 𝜇, 𝜎 ∼ 𝒩 (𝜇𝑧𝑘 , 𝜎𝑧𝑘) likelihood of each component

𝑑𝑘|𝑤 , 𝜇, 𝜎 ∼
𝑄
∑
𝑞=1

𝑤𝑞𝒩 (𝜇𝑞, 𝜎𝑞) marginal likelihood

We can already write the log-likelihood of the clustering (for a given
scale):

ℓcluster = ∑
𝑘
LSE
𝑞

(log𝑤𝑞 + log 𝑓 (𝑑𝑘|𝜇𝑞, 𝜎𝑞))

where LSE is the log-sum-exp operation.
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For the participants’ judgment, we assume that the acceptability tracks
the probability of an item being in the same cluster as the largest item in the
comparison class, conditional on the smallest and largest being in different
clusters:

𝑃(𝑧𝑖 = 𝑧𝐾|𝑧1 ≠ 𝑧𝐾) = |
0 if 𝑖 = 1
1 if 𝑖 = 𝐾

𝑃(𝑧𝑖=𝑧𝐾≠𝑧1)
𝑃(𝑧𝐾≠𝑧1)

otherwise

Let’s decompose the numerator in cases where 𝑖 is neither 1 nor 𝐾. The
degrees of the different elements are assumed to be independent, so:

𝑃(𝑧𝑖 = 𝑧𝐾 ≠ 𝑧1) = ∑𝑞
𝑤𝑞𝑓 (𝑑𝑖|𝜇𝑞,𝜎𝑞)
𝑓 (𝑑𝑖|𝜇,𝜎 ,𝑤)

𝑤𝑞𝑓 (𝑑𝐾|𝜇𝑞,𝜎𝑞)
𝑓 (𝑑𝐾|𝜇,𝜎 ,𝑤)

(1 −
𝑤𝑞𝑓 (𝑑1|𝜇𝑞,𝜎𝑞)
𝑓 (𝑑1|𝜇,𝜎 ,𝑤)

)

= 1
𝑓 (𝑑𝑖|𝜇,𝜎 ,𝑤)𝑓 (𝑑𝐾|𝜇,𝜎 ,𝑤)

∑𝑞 exp 𝑎𝑖,𝑞

𝑎𝑖,𝑞 = 2 log𝑤𝑞 + log 𝑓 (𝑑𝑖|𝜇, 𝜎 , 𝑤) + log 𝑓 (𝑑𝐾|𝜇𝑞, 𝜎𝑞) + log1m
𝑤𝑞𝑓 (𝑑1|𝜇𝑞, 𝜎𝑞)
𝑓 (𝑑1|𝜇, 𝜎 , 𝑤)

Similarly for the denominator:

𝑃(𝑧𝐾 ≠ 𝑧1) = 1
𝑓 (𝑑𝐾|𝜇,𝜎 ,𝑤)

∑𝑞 exp 𝑏𝑞

𝑏𝑞 = log𝑤𝑞 + log 𝑓 (𝑑𝐾|𝜇𝑞, 𝜎𝑞) + log1m
𝑤𝑞𝑓 (𝑑1|𝜇𝑞, 𝜎𝑞)
𝑓 (𝑑1|𝜇, 𝜎 , 𝑤)

Finally, we can write the predicted acceptability from which we can derive
the likelihood of participant 𝑛’s response 𝑦𝑖:

logAcc(𝑑𝑖) = LSE
𝑞

𝑎𝑖,𝑞 − LSE
𝑞

𝑏𝑞 − log 𝑓 (𝑑𝑖|𝜇, 𝜎 , 𝑤)

𝑦𝑖 ∼ 𝒩 [0,1] (Acc(𝑑𝑖), 𝜖𝑛)

𝜖𝑛 is specific to participant 𝑛, and (𝜇, 𝜎 , 𝑤) are specific to 𝑛 and a particular
comparison class.
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