
EISS 11 91

Domain-specific and General Syntax and

Semantics in the Talkamatic Dialogue

Manager

Staffan Larsson • Alexander Berman

Abstract We present a design philosophy for dialogue system development,
where domain-specific domain knowledge is clearly separated from the logic
for generic dialogue capabilities. We hope that this provides a useful illustration
of how one may approach the division of labour between general and domain-
specific syntax, semantics and pragmatics.

Keywords dialogue · dialogue systems · syntax · semantics · dialogue
management · grammar

S. Larsson, University of Gothenburg, sl@ling.gu.se
A. Berman, Talkamatic AB, alex@talkamatic.se

In Christopher Piñón (ed.), Empirical Issues in Syntax and Semantics 11, 91–110. Paris: CSSP.
http://www.cssp.cnrs.fr/eiss11/
© 2016 Staffan Larsson & Alexander Berman

1 Introduction
This paper outlines a format, currently under development, for specifying
Dialogue Domain Descriptions (DDD) for a domain-independent dialogue
system, the Talkamatic Dialogue Manager (Larsson et al. 2011a,b). One of
the central principles underlying the design of TDM is the separation of
domain-specific knowledge from general dialogue capabilities. We hope
that this provides a useful illustration of how one may approach the di-
vision of labour between general and domain-specific syntax, semantics
and pragmatics in a dialogue system.

These practical considerations may also be of interest from a more the-
oretical perspective. One may conjecture that general principles that pro-
vide the basis for a useful dialogue systems design also says something
about the nature of the human ability to participate in natural language
dialogue. Exactly how to pin down the relation between dialogue systems
and human linguistic competence, however, is a delicate matter. It is im-
portant to be aware that the usefulness of some design principles may be



92 S. Larsson & A. Berman

due to the needs of dialogue application designer in being able to quickly
construct (and debug) dialogue system applications, something which has
no counterpart with regard to human linguistic competence.

2 The Talkamatic Dialogue Manager
The Talkamatic Dialogue Manager (TDM) is a commercial platform for
building spoken dialogue systems. It is a reimplementation and develop-
ment of the GoDiS/IBiS (Gothenburg Dialogue System/Issue-Based Infor-
mation System) system described in Larsson 2002, developed using the in-
formation state update approach to dialogue management (Traum& Lars-
son 2003), which takes considerable input from the KoS (conversation-
oriented semantics) framework (Ginzburg 2012).

TDM consists of the following runtime subcomponents:

• Frontend: mainly consisting of an automatic speech recogniser and
a text-to-speech synthesiser.

• Backend: consisting of a dialogue move engine, natural-language
interpreter, etc.

• SessionManager: providing each frontend with access to a backend,
and routing communication between frontend and backend.

TDM also contains design-time subcomponents constituting an SDK (soft-
ware development kit) for developing DDDs. Dialogue domains consist of
the following parts:

• An ontology defining concepts, entities and actions that the user and
the system may reference in questions, answers and requests.

• Domain knowledge in the form of dialogue plans (and related no-
tions), describing how actions are carried out and how questions are
answered. Plans also describe what information is needed in order
to carry out the actions or to answer the questions.

• A language model or grammar, describing words and utterances
used by the user and system. In other words, the language model
defines syntax rules and mappings between linguistic surface forms
and semantic entities.

• A service interface describing how services that the domain depends
on are accessed and used, for example web APIs or functionality



Domain-specific and General Syntax and Semantics in TDM 93

hosted natively on the user’s device.

3 Dialogue Design
TDM is the result of an effort to build a dialogue manager on sound en-
gineering principles, exploiting knowledge from research about human
dialogue. The following principles have guided TDM design:

• Apply general solutions to general problems
• Don’t mix different kinds of knowledge

These principles have led to an architecture where knowledge about the
domain (e.g., telephony or navigation) is separated from general knowl-
edge about dialogue. This means that app developers can focus on defin-
ing domain-specific knowledge, such as information about concepts and
which words are used to talk about the concepts. General dialogue capa-
bilities such as asking questions, giving answers and providing feedback
are built into the dialogue manager and do not need to be provided by app
developers. This facilitates building apps since general dialogue strategies
need not be reinvented each time a new dialogue is built. Thus, the de-
veloper can focus on app-specific development.

For example, one can consider a simple app enabling the user to make
phone calls. The developer specifies that calling contacts is an actionwhich
requires the system to know who to call. The developer also specifies that
the system asks about this information with the sentence “Who do you
want to call?” Based on this domain knowledge, TDM will choose to ask
the question “Who do you want to call?” whenever the information is re-
quired. It may also choose to repeat the question when motivated, or to
refrain from asking the question if the answer has been provided without
prompting the user. In other words, the overall logic governing the dia-
logue is contained within TDM, while domain-specific knowledge, such
as dependencies between various kinds of information in the form of dia-
logue plans, are kept in the DDDs.

The same principle of division of labour holds for the surface forms of
user and system utterances. General forms for dialogue moves are spec-
ified in a domain-independent grammar, which is then fleshed out by
a domain-specific grammar which supplies the surface forms associated
with domain-specific entities, predicates and actions.



94 S. Larsson & A. Berman

When an app developer builds a new app, there is no need to extend
or modify the dialogue manager as such – only domain-specific knowl-
edge needs to be supplied. The idea is that since dialogue design is built
into the TDM, it should be easy to produce usable, well-designed dialogue
interfaces. Natural and flexible dialogue flow is a built-in feature which
comes for free when specifying the dialogue plans. The built-in feedback
model ensures that user and system are on the same track. A rich contex-
tual model is available for intelligent interpretation of speech recognition
results, as well as providing information for disambiguation of unclear
utterances. Additionally, language models (grammars) are described at
a high level of abstraction in a simple format, which makes it easier for
non-linguists to build and localise apps.

However, it is important to note that TDM cannot participate in ar-
bitrarily complex dialogue. Roughly, TDM covers dialogues requiring the
system to provide some information to a user or to perform some action,
and to do this, the system needs to collect certain bits of information from
the user. Information search can be incremental in that a range of options
is manipulated in successive steps until one option is chosen by the user.
For example, if the user asks the system to play a radio program, the sys-
tem will ask the user to specify parameters such as genre (music, news,
sports, etc.) and channel (in Swedish radio: P1, P2, P3, local channels,
etc.). Whenever the user specifies or modifies a parameter, the range of
options listed changes. When the user finally selects one of the options, the
program starts playing. During the interaction, the user can behave fairly
freely, and for example switch to other conversational topics and return
to the radio program topic without the system losing context. However,
TDM is currently not designed to handle, for example, complex planning
tasks where several plans to achieve a goal are compared and argued for
and against. Nor can it handle purely socially oriented dialogue that has
no concrete task other than maintaining social relations.

TDM’s built-in dialogue design enables more complex interactions than
most other dialogue managers on the market, while keeping a fairly sim-
ple dialogue design format. The subsequent subsections describe some of
the general dialogue features in more detail.



Domain-specific and General Syntax and Semantics in TDM 95

3.1 Flexible Dialogue Flow
Given a simple dialogue plan specifying a default dialogue flow which
achieves a given goal, TDM manages a wide variety of dialogue flows to
achieve the goal. If the user simply responds to system questions, the dia-
logue will follow the default flow. But if the user chooses to give more or
other information than requested, or takes initiative to talk about some-
thing else, TDM adapts to this. The user may even just provide some in-
formation which is relevant to him or her at the moment, and TDM will
either figure out what the user wants to do, or ask a clarification question
to move the dialogue along. It is also possible to revise answers without
having to restart the dialogue.

Some aspects of flexible dialogue flow are present in systems like Siri
and Google Now, and some are supported by the VoiceXML standard.
However, compared to most other systems TDM offers a relatively wide
and complete range of flexible dialogue behaviours. To take one example,
if the user changes the subject while talking to Siri, the previous topic
will be forgotten by the system. In contrast, once the embedded topic
has been finished, TDM will switch back to the previous topic and sig-
nal this explicitly. This means that if the user asks, for example, about the
weather while checking bus routes to a specific destination, TDM provides
the weather information and then returns to the previous activity by say-
ing “Returning to selecting a route.” The surface form for such dialogue
moves, which indicate sequencing, are defined in the domain-independent
grammar component.

3.2 Feedback
TDM features a fairly elaborate feedback model to cope with communi-
cation problems. Feedback (positive and negative) and clarification ques-
tions are given on several levels. For example, assuming that a user said
“Anna” to a telephony app, the system could give feedback regarding per-
ception (“I didn’t hear anything from you,” “I heard you say Anna, is that
correct?”), semantics (“I don’t understand,” “OK, Anna”), intentions (“OK,
you said Anna. Do you want to make a call?”) and acceptance/rejection
(“I don’t have a phone number for Anna”). All feedback utterances are
defined in a domain-independent grammar component.

Pinpointing communication errors and clarifying potential misunder-



96 S. Larsson & A. Berman

standings means better chance of dialogue success. However, excessive
feedback may lead to inefficient dialogues and dissatisfied users, which
is why speech recognition and interpretation leads to various contextual
factors. These contextual factors in turn may be helpful in perceiving and
understanding user utterances.

4 Dialogue Domain Descriptions
This section gives a brief overview of the XML format for DDDs. The for-
mat supports ontology, plans, grammar and interaction tests. The last part
(service interface) will be addressed in future work. Note that this section
is not intended as a manual for building DDDs, and only provides a par-
tial description of the DDD XML format. Code excerpts are taken from the
Talkamatic GitHub repository, where the complete example DDD can be
found.1

4.1 Ontology and Semantics
Ontology works as a TDM’s table of all entities and actions that a specific
application talks about. The following kinds of entities are defined by the
ontology, also described by the example in figure 1.

• Sorts (general or domain-specific) ontological categories which are
used to enforce sortal constraints on semantic representations, and
to guide interpretation and generation.

• Individuals which include all single entities that the app can talk
about (e.g., contacts). Individuals can be declared explicitly in the
ontology. For example, in the phone domain an individual Anna can
be declared to be of the sort contact. Alternatively, a sort can be de-
clared as dynamic, which means individuals of that sort are created
dynamically in runtime by consulting the service interface.

• Predicates are used for representing propositions and questions (rep-
resented in XML using only predicates). Each (one-place) predicate
declares the required sort of its argument (or value). For exam-
ple, the argument of the contact_to_call predicate can only be
a contact, thus Anna will be a valid argument.

1See the site https://github.com/Talkamatic/dialogue-domain-descriptions/
tree/master/android/android.



Domain-specific and General Syntax and Semantics in TDM 97

<ontology name="PhoneOntology">

<action name="call"/>

<sort name="contact" dynamic="true"/>
<sort name="phone_number" dynamic="true"/>

<predicate name="phone_number_of_contact" sort="phone_number"/>
<predicate name="selected_contact_to_call" sort="contact"/>
<predicate name="selected_contact_of_phone_number" sort="contact"/>

</ontology>

Figure 1 Ontology for the phone domain

• Actions that TDM can be requested to carry out, typically by calling
the service interface.

The elements defined in the ontology are used in domain-specific se-
mantic representations in TDM. The account in Larsson 2002 uses a very
simple representation of propositions loosely based on predicate logic (with-
out quantification). This is extended this with lambda-abstraction of propo-
sitions and a question operator “?” which can be thought of as a function
from a (possibly lambda-abstracted) proposition to a question. Further-
more, Larsson (2002) uses a (domain-independent) semantic category to
account for the content of short answers (e.g., “yes” or “Paris”). This repre-
sentation is also the basis for the semantic representations currently used
in TDM.

Propositions correspond roughly to basic formulae of predicate logic
consisting of an 0-ary or 1-ary predicate together with constants repre-
senting its arguments, for example return-trip (0-ary predicate) and dest-
city(paris) (using an 1-ary predicate).

• Expr : Proposition if

– Expr : Pred0 or
– Expr = pred1(ar g), where arg : Ind and pred1 : Pred1 or
– Expr = ¬P, where P : Proposition

In a dialogue system operating in a domain of limited size, it is often not
necessary to keep a full semantic representation of utterances. For ex-



98 S. Larsson & A. Berman

ample, a user utterance of “I want to go to Paris” could be represented
semantically as, for example, want(user, go-to(user, paris)) or want(u,
go-to(u,p)) & city(p) & name(p, paris) & user(u). TDM uses a re-
duced semantic representation with a coarser, domain-dependent level
of granularity; for example, the above example will be rendered as dest-
city(paris). This reduced representation reflects the level of semantic gran-
ularity inherent in the underlying domain task. As an example, in a travel
agency domain there is no point in representing the fact that it is the user
(or customer) rather than the system (or clerk) who is going to Paris; it is
implicitly assumed that this is always the case.

As a consequence of using reduced semantics, it will be useful to al-
low 0-ary predicates, for example return-trip meaning “the user wants
a return ticket”. Furthermore, so far we have not found reason to move
beyond unary (1-place) predicates in TDM. We conjecture that this is due
to the structure of the kind of dialogue that TDM can currently engage in,
where propositions are essentially equivalent to feature-value pairs. An
interesting question is how far one can get with one-place predicates, and
when this breaks down. One hypothesis is that binary predicates will be
needed as soon as there is a need to talk about several entitities of the
same kind (flights, for example), which have different properties (e.g.,
travel time, number of stops, price, etc.). This happens, for example, in
negotiative dialogue of the sort described in Larsson 2002.

The advantage of the semantic representation used in TDM is that the
specification of domain-specific semantics becomes simpler, and that un-
necessary “semantic clutter” is avoided. However, it does have limited ex-
pressive power and would need to be extended to deal with more complex
genres of dialogue requiring a more fine-grained semantics, for example
by adding binary and perhaps n-ary (n> 2) predicates.

Three sorts of questions are treated by TDM: y/n-questions,wh-questions,
and alternative questions.

• Expr : Question if Expr : YNQ or Expr : WHQ or Expr : ALTQ
• ?P : YNQ if P : Proposition
• ?x .pred1(x) : WHQ if x : Var and pred1 : Pred1

• {?ynq1, . . . , ?ynqn} : ALTQ if ynqi : YNQ for all i such that 1≤ i ≤ n

In TDM semantics, y/n-questions correspond to propositions preceded by



Domain-specific and General Syntax and Semantics in TDM 99

a question mark, for example ?dest-city(london) (“Do you want to go
to London?”). Wh-questions correspond to lambda-abstracts of proposi-
tions, with the lambda replaced by a question mark, for example ?x .dest-
city(x) (“Where do you want to go?”), and alternative questions are sets
of y/n-questions, for example {?dest-city(london), ?dest-city(paris)}
(“Do you want to go to London or do you want to go to Paris?”). Here,
TDM semantics goes beyond standard predicate logic. Note, by the way,
that we do not provide amodel theoretic semantics for this notation.While
this would be fairly straightforward (possibly with some minor complica-
tions related to the semantics of questions), we see no clear role for such
a semantics in a dialogue system, except possibly as a tool for ensuring
consistency and orderliness. The use of the term “semantics” for these
representations is motivated, rather, from their role in providing a struc-
ture for the domain which is used for mediating between natural language
utterances (from both user and system) and the underlying service inter-
face.

Ginzburg uses the term “short answers” for phrasal utterances in dia-
logue such as “Paris” as an answer to “Where do you want to travel?” in
a travel agency setting. These are standardly referred to as elliptical ut-
terances. Ginzburg argues that (syntactic) ellipsis, as it appears in short
answers, is best viewed as a semantic phenomenon with certain syntactic
presuppositions. That is, the syntax provides conditions on what counts
as a short answer but the processing of short answers is an issue for se-
mantics.

We follow this in seeing short answers from a semantic point of view.
What this means, in effect, is that we are not interested in syntactic ellip-
sis, but rather in semantic underspecification of a certain kind. Further-
more, the semantics used by the system is domain-dependent and thus
what we are really interested in is semantic underspecification with re-
gard to the domain/activity. On this account, an utterance is semantically
underspecified iff it does not determine a unique and complete proposi-
tion in the given activity. Of course, this means that whether an utterance
is regarded as underspecified or not depends on the granularity of propo-
sitional content, and what types of entities are interesting in a certain ac-
tivity. For example, given the type of simple semantics that we are using on
our sample travel agency domain, “to Paris” is not semantically elliptical,



100 S. Larsson & A. Berman

since it determines the complete proposition dest-city(paris). However,
“to Paris” would be semantically underspecified in an activity where it
could also be taken to mean for example “You should go to Paris.”

• Expr : ShortAns if

– Expr = yes or
– Expr = no or
– Expr : Ind or
– Expr = ¬arg where arg : Ind

In general, semantic objects of type ShortAns can be seen as underspec-
ified propositions. In TDM, we only deal with individual constants (i.e.,
members of Ind), and answers to y/n-questions, i.e., yes and no. Individ-
ual constants can be combined with wh-questions to form propositions,
and yes and no can be combined with y/n-questions.

Note that we allow expressions of the form ¬arg where arg:Ind as short
answers. This is used for representing the semantics of phrases like “not
Paris.” In a more developed semantic representation these expressions
could be replaced by a type-raised expression, for example λP.¬P(arg).

Questions and answers can be combined to form propositions, as shown
in table 1. The special case for wh-questions is similar to functional appli-
cation, as when the question ?x .dest-city(x) is combined with paris to
form dest-city(paris). Questions can also be combined with propositions,
yielding the same propositions as result provided the question and the
propositions have the same predicate and that the proposition is sortally
correct. It is also possible to combine y/n-questions and alternative ques-
tions with answers to form propositions. In general, we say that a question
q and an answer a combine to form a proposition p. Related definitions
of answers being relevant to and resolving questions are given in Larsson
2002.

4.2 Dialogue Plans
Plans include information about how the dialogue with the user should
progress. Figure 2 shows an example. TDM requires a top plan (action =
”top”) declaring what the system should at the outset of each interaction.
In general, plans are identified by their goals, that is, things that the plan
shall have done by its completion. There are two types of goals in TDM:



Domain-specific and General Syntax and Semantics in TDM 101

Question Answer Proposition
?x .pred1(x) a or pred1(a) pred1(a)

¬a or ¬pred1(a) ¬pred1(a)
?P yes or P P

no or ¬P ¬P
{?P1, ?P2, . . . , ?Pn} Pi, (1≤ i ≤ n) Pi

¬Pi, (1≤ i ≤ n) ¬Pi

Table 1 Combining questions and answers into propositions

resolving a question, and performing an action. These are represented as
follows (the corresponding XML representations can be seen in figure 2):

• resolve(q) where q:Question
• perform(α) where α:Action

A plan tag includes a goal and all the steps that are needed to be done to
accomplish the goal. Such a step can be the findout(q) item which tells
TDM that the question q needs to be resolved. For example, within the
call goal, the findout statement instructs TDM to resolve a wh-question
formed by the selected_contact_to_call predicate). A dev_perform
item signifies that TDM has to execute an action external to the dialogue,
for example making a call, sending an SMS or updating a database. The
execution of external actions is specified in the service interface. Simi-
larly, dev_query is like dev_perform except that it specifies a question,
prompting TDM to await an answer to the question to be returned from
the service interface.2

4.3 Grammar
TDM takes hybrid template/grammar approach to natural language gen-
eration and interpretation, where grammatical knowledge is used to min-
imize the work involved in developing and localising an application to a
new language. Domain-specific linguistic knowledge, defined by the app

2The TDM service interface definition is currently being converted into XML format,
and we will not describe it further here. Suffice to say that the service interface needs to
define all the queries and actions (defined using dev_query and dev_perform) that are
included in the dialogue plans, as well as some related knowledge.



102 S. Larsson & A. Berman

<domain name="PhoneDomain" is_super_domain="true">

<goal type="perform" action="top">
<plan>
<forget_all/>
<findout type="goal"/>

</plan>
</goal>

<goal type="perform" action="call">
<plan>
<findout type="wh_question" predicate="selected_contact_to_call"/>
<dev_perform action="Call" device="AndroidDevice" postconfirm="true"/>

</plan>
<postcond><device_activity_terminated action="Call"/></postcond>

</goal>

<goal type="resolve" question_type="wh_question" predicate="phone_number_of_contact">
<plan>
<findout type="wh_question" predicate="selected_contact_of_phone_number"/>
<dev_query device="AndroidDevice" type="wh_question"

predicate="phone_number_of_contact"/>
</plan>

</goal>

</domain>

Figure 2 Domain knowledge for phone domain (excerpt)

developer, is kept separate from other domain knowledge and from gen-
eral linguistic knowledge built into TDM.

The grammar specifies a language model which consists of mappings
between linguistic surface forms (primarily text strings) and semantic en-
tities relating to the ontology, such as individuals, actions and questions. A
single grammar specifies both user and system utterances, thus promoting
consistency between what the system can say and what it can understand.

The grammar used by a TDM application is a combination of a domain-
specific grammar (such as that shown in figure 3) and a general TDM
grammar, which specifies the general form of the main TDM dialogue
moves (ask, answer, request, confirm and greet) as well as for feed-
back moves. This means that the domain-specific grammar can be kept to
a minimum.

The first entry in figure 3 (action name=”call”) expresses that the
action call can be referred with a verb phrase containing the verb call. It
also contains a lexicon describing the grammar of call in English. We only



Domain-specific and General Syntax and Semantics in TDM 103

<grammar>

<action name="call">
<verb-phrase>
<verb ref="call"/>

</verb-phrase>
</action>

<lexicon>
<verb id="call">
<infinitive>call</infinitive>

</verb>
</lexicon>

<request action="call">
<utterance>
<one-of>
<item>make a call</item>
<item>call <individual sort="contact"/></item>

</one-of>
</utterance>

</request>

<question speaker="system" predicate="selected_contact_to_call" type="wh_question">
<utterance>who do you want to call</utterance>

</question>

<predicate name="phone_number_of_contact">
<noun-phrase>
<noun ref="number"/>

</noun-phrase>
</predicate>

<question speaker="user" predicate="phone_number_of_contact">
<utterance>
<one-of>
<item>tell me a phone number</item>
<item>what is <individual sort="contact"/>’s number</item>
<item>tell me <individual sort="contact"/>’s number</item>

</one-of>
</utterance>

</question>

<answer speaker="system" predicate="phone_number_of_contact">
<utterance>
<individual predicate="selected_contact_of_phone_number"/> has number
<individual predicate="phone_number_of_contact"/>

</utterance>
</answer>

</grammar>

Figure 3 Grammar for the phone domain (excerpt)



104 S. Larsson & A. Berman

need to specify the infinitive form for the verb. The other forms, such as
imperative and present progressive, are derived automatically from the
general grammar resource for English.

The domain-general grammar also states that actions can be requested
by using the imperative form that refers to the action, in this case “Call.”
When the system asks what the user wants to do, it may use the infinitive
form, as in “Do you want to call?” The present progressive can be used by
system confirmations, for example “Calling” or “Calling Anna.”

Since these basic forms may not always be sufficient, additional forms
can be declared in the domain-specific grammar.Multiple alternative forms
can be provided using the <one-of> tag which encloses alternatives as
<item>s. See the third entry in figure 3 for an example.

As can be seen by the second item in the third entry in figure 3, TDM
grammar entries may use placeholders for individuals, represented by the
<individual> tag. This tag specifies a predicate, which in generation is
instantiated with the surface form of the individual that the predicate
holds of. In interpretation, a slot is similarly expected to be instantiated
with the surface form of the individual that the predicate holds of. The
rest of the grammar excerpt in figure 3 declares how the system is to ask
questions about who to call; how the user may ask for the phone num-
ber of a contact; and how the system may answer questions about phone
numbers of a given contact.

Given a grammar such as that shown in figure 3 (extended with some
additional surface forms for other actions), TDM can generate and under-
stand a range of utterances combining elements from a domain-specific
grammar (in dark green) and the domain-independent resource grammar
provided by TDM (in blue):

• System alternative question: Do you want to make a call or get the
number of a contact?

• System wh-question: Who do you want to call?
• System report: Calling; Calling Anna
• System feedback: I heard you say Anna, is that correct?; OK, Anna
• System topic management: Returning to calling
• User request: I want to make a call; Call Anna, I want to call Anna;

Would you please call Anna



Domain-specific and General Syntax and Semantics in TDM 105

• User answers: Anna
• User feedback: Pardon?, Please repeat

Above, we have only shown excerpts from the English grammar. Com-
plete English, French and Dutch grammars for the example domain are
available from GitHub.3

5 Domain-independent Knowledge in TDM
Apart from the rules and algorithms governing dialogue management,
which are general within the confines of the kind of action- and issue-
oriented dialogue that TDMwas designed for, domain-independent knowl-
edge in TDM includes the following:

• The types of dialogue moves that speakers can perform, and the
kinds of semantic entities they take as arguments (e.g., ask moves
take questions)

• Information state update rules and algorithms governing dialogue
management, including rules connecting dialogue moves to infor-
mation state updates

• The format for sentence-level semantic entities such as propositions
and questions, and their relation to the domain-specific predicates,
entities and actions

• General and abstract semantic relations between questions and an-
swers, such as whether an answer is relevant to, resolves, or combines
with a question, defined in terms of semantics, and used to define
update rules

• General surface forms and patterns which are used together with
domain-specific grammars for parsing and generating utterances,
thus connecting them to the TDM dialogue moves

In the information-state approach, the precise semantics of a dialogue
move type is determined by the update rules which are used to integrate
moves of that type into the information state. This means that all occur-
rences of a move type are integrated by the same set of rules. The up-
date rules (and associated algorithms) used in the GoDiS/IBiS system,

3See the site https://github.com/Talkamatic/dialogue-domain-descriptions/
tree/master/android/android/grammar.



106 S. Larsson & A. Berman

and forming the starting point for the rules used in TDM, are descibed in
Larsson 2002.

While dialoguemove types are often defined in terms of sentencemood,
speaker intentions, and/or discourse relations (Core & Allen 1997), we opt
for a different solution. In our approach, the type of move realized by an
utterance is determined by the relation between the content of the utter-
ance, and the activity in which the utterance occurs. For example, if an
utterance provides information which is relevant to a question in the do-
main, it is regarded as realizing an answer move (regardless of whether
the question has been asked).

The following dialogue moves are used in TDM:

• ask(q), where q : Question
• answer(a), where a : ShortAns or a : Proposition
• request(α), where α : Action
• report(α, σ), where α : Action and σ : Status is the status of the

action (one of started, ended, and failed)
• greet
• quit

In inquiry-oriented dialogue, the central dialogue moves concern raising
and addressing issues. This is done by the ask and answer moves, re-
spectively. For action-oriented dialogue, the request and report moves are
added to enable requesting and reporting on the status of actions. The
greet and quit moves are used in the beginning and end of dialogues to
greet the user and indicate that the dialogue is over, respectively.

6 Semantic Coordination in Dialogue Systems
Cooper & Ranta (2008) propose a shift in perspective from the view of nat-
ural languages as formal languages to natural languages as a collection of
resources for constructing local languages for use in particular situations.
They point to a research programme investigating how such resources
play a role in linguistic innovation by agents constructing situation-specific
local languages and how they can be made dynamic, modified by the lin-
guistic agent’s exposure to innovative linguistic data. This is related to
a prominent problem in current dialogue systems, namely, the fact that
users are constrained to a static pre-programmed language – what Bren-



Domain-specific and General Syntax and Semantics in TDM 107

nan (1998) refers to as the vocabulary problem in spoken dialogue systems.
Present-day dialogue systems require users to talk in ways foreseen by

programmers. This makes systems less useful and may lead to increased
cognitive load on user, making systems potentially dangerous to use, for
example while driving. When exposed to unexpected formulations, lan-
guage understanding in a dialogue system will break down. By contrast,
when exposed to unexpected formulations, people are capable of semantic
coordination (Larsson 2015), either by (silently) figuring out (based on lin-
guistic and contextual clues) a plausible meaning and updating their own
take on how language is used in the current context, or by interactive
clarification and meaning negotiation.

Eventually, we will want to enable dialogue systems to handle semantic
coordination, which requires the ability to adapt old meanings and learn
new ones, and clarify and negotiate meanings in metalinguistic dialogue.
The kind of semantics used in present-day dialogue systems capture only
a fraction of the natural language meanings of the words in the gram-
mar. A simple addition would be to allow adding new ways of referring to
known individuals, predicates, etc. However, semantic coordination will
be more useful when meaning representations have more structure and
where more reasoning is performed.

In this context, a possible conjecture with respect to learning vs. pro-
gramming of domain-dependent and domain-independent knowledge about
syntax, semantics and pragmatics could be that only domain-specific knowl-
edge need to be learnable, whereas domain-general knowledge can be pre-
programmed. (Pre-programmed pragmatics will include strategies and di-
alogue acts for engaging in semantic coordination.) The intuition behind
this conjecture is that while language is continually adapted by speak-
ers to specific domains, the general linguistic resources that underpin this
adaptation change at a pace that, for the purposes of dialogue systems
development, can be handled on an engineering level without excessive
cost. Further support can perhaps be found in the observation regarding
human speakers is that while we tend to have no problem adapting our
language to new domains and new dialogue partners, we frequently resist
(and even protest) changes to our shared general vocabulary and gram-
mar.



108 S. Larsson & A. Berman

7 Multilinguality and Domain-specific Grammar
Regarding the division of labour at the level of syntax and semantics,
general forms for dialogue moves are specified in a domain-independent
grammar. This grammar is defined using GF (Grammatical Framework)
Resource Grammar Library (Ranta 2004). The general grammar is then
fleshed out by the domain-specific grammar (written in XML), which sup-
plies the surface forms associated with domain-specific entities, predicates
and actions. The XML format allows taking advantage of GF resource
grammars without knowing GF.

A major benefit of GF is that it provides resource grammars for a large
number of languages, which simplifies localization of dialogue system ap-
plications to new languages. An interesting question arises here with re-
spect to how language-dependent the semantics implemented in the do-
main and grammar is. It is well-known that languages differ with respect
to their semantic categories, but arguably many of these differences are
at the level of language in general rather than at the level of specific do-
mains. When building dialogue system applications and porting them to
new languages, it is often implicitly assumed that activities and domains
are invariant across languages. Insofar as this is true, it may be that differ-
ences between languages at the general (domain-independent) level are
more or less cancelled out in the process of adapting the language to the
domain (either by design or through interaction).

Still, it may be that different languages will be differently equipped to
handle certain domains, insofar as semantic distinctions in each domain
derive from general distinctions in the language. If this is true, this means
that the process of achieving a domain language for a domain may differ
between languages, and may be easier for some domain + language pairs
than others. At the present time, this is just a speculation, but if (when)
future dialogue systems become able to interactively coordinate on new
meanings and learn from experience how to talk about new activities, it
will become a testable hypothesis.

8 Conclusions
We have illustrated a design philosophy for dialogue system development,
where domain-specific domain knowledge is clearly separated from the
logic for generic dialogue capabilities. We hope that this provides a useful



Domain-specific and General Syntax and Semantics in TDM 109

illustration of how one may approach the division of labour between gen-
eral and domain-specific syntax, semantics and pragmatics in a dialogue
system. We also briefly discussed issues of multilinguality and the possi-
bility of dialogue systems learning (rather than being programmed), and
coordinating with users on, domain-specific meanings.

Acknowledgments We are very grateful to the anonymous reviewer and to the
editor for providing useful and insightful comments and suggestions. This work
was supported by the Centre for Language Technology (CLT) and the Centre for
Linguistic Theory and Studies in Probability (CLASP) at Gothenburg University,
and partially financed by the European Commission under the FP7-ICT-Project
ALFRED (grant agreement no. 611218).

References
Brennan, Susan E. 1998. The vocabulary problem in spoken language systems.

In Susann LuperFoy (ed.), Automated spoken dialog systems, Cambridge,
MA: The MIT Press. http://www.psychology.sunysb.edu/sbrennan-/

papers/luperfoy.pdf.
Cooper, Robin & Aarne Ranta. 2008. Natural languages as collections of re-

sources. In Robin Cooper & Ruth Kempson (eds.), Language in flux: Relating
dialogue coordination to language variation, change and evolution, 109–120.
London: College Publications.

Core, Mark G. & James F. Allen. 1997. Coding dialogues with the DAMSL anno-
tation scheme. In David Traum (ed.), Working Notes: AAAI Fall Symposium
on Communicative Action in Humans and Machines, 28–35. Menlo Park, CA:
American Association for Artificial Intelligence.

Ginzburg, Jonathan. 2012. The interactive stance. Oxford University Press.
Larsson, Staffan. 2002. Issue-based dialogue management. Göteborg, Sweden:

Göteborg University dissertation.
Larsson, Staffan. 2015. Formal semantics for perceptual classification. Journal of

Logic and Computation 25(2). 335–369.
Larsson, Staffan, Alexander Berman & Jessica Villing. 2011a. Adding a speech

cursor to a multimodal dialogue system. In INTERSPEECH 2011, 12th Annual
Conference of the International Speech Communication Association, Florence,
Italy, 2011, 3319–3320.

Larsson, Staffan, Alexander Berman & Jessica Villing. 2011b. Multimodal menu-
based dialogue with speech cursor in Dico ii+. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Lan-



110 S. Larsson & A. Berman

guage Technologies: Systems Demonstrations HLT ’11, 92–96. Stroudsburg, PA:
Association for Computational Linguistics.

Ranta, Aarne. 2004. Grammatical framework: A type-theoretical grammar for-
malism. The Journal of Functional Programming 14(2). 145–189.

Traum, David & Staffan Larsson. 2003. The information state approach to dia-
logue management. In Jan van Kuppevelt & Ronnie W. Smith (eds.), Current
and new directions in discourse and dialogue, 325–353. Kluwer Academic Pub-
lishers.


